Exploration of Picture Grammars, Grammar Learning and Inductive
L ogic Programming for | mage Under standing

P. G. Ducksbury*, C. Kennedy, Z. Lock

QinetiQ, Advanced Processing Centre, St Andrews Road, Malvern, Worcs, WR14 3PS, UK.

ABSTRACT

Grammars have been used for the formal specification of programming languages [1], and there are a number of
commercial products which now use grammars. However, these have tended to be focused mainly on flow control type
applications. In this paper, we consider the potential use of picture grammars and inductive logic programming in
generic image understanding applications, such as object recognition. A number of issues are considered, such as what
type of grammar needs to be used, how to construct the grammar with its associated attributes, difficulties encountered
with parsing grammars followed by issues of automatically learning grammars using a genetic algorithm. The concept of
inductive logic programming is then introduced as a method that can overcome some of the earlier difficulties.

Keywords: Grammars, Genetic Algorithms, Inductive Logic Programming, Object Recognition, Feature Detection
1. INTRODUCTION

Grammars have been used for the formal specification of programming languages [1], the Backus-Naur Form (BNF)
being the oldest formalism. A number of commercia products exist which use grammars, for example; Prograph [11],
Labview [12], IRIS Explorer [13], BALSA [14], ARK [15] to name a few. These products are mainly (but not
exclusively) concerned with flow control type applications. In this paper, we provide an overview of grammars and
describe a possible use of them in image understanding such as site and object detection. The paper, firstly describes
experiments in both manual and automatic construction of grammars, the automatic construction being applied using a
genetic algorithm. Difficulties may be present in the construction of an accurate set of rules for a grammar, for the
recognition of a particular object. For this reason the paper then describes how inductive logic programming can be
employed to overcome the difficulties, by approaching the recognition problem from a data driven approach.

There are a number of different types of grammars referred to in the literature; for example, context-free grammars,
context-sensitive graph grammars, layered graph grammars, attribute grammars, attributed multisets and attributed
multiset grammars. In a context-free grammar, every left hand side consists of a single non-terminal node, whilst in a
context-sensitive graph grammar both |eft and right side of a production are graphs. In layered graph grammars, the left
hand side must be lexico-graphically smaller than its right hand side'. Attribute grammars are context-free grammars
with some formal mechanism (attributes, evaluation rules, conditions) which enable non context-free aspects to be
specified. The value associated with an occurrence of an attribute in a tree is determined by the mechanisms associated
with the grammar’s production rules. Attributed multisets are an unordered collection of attributed symbols, which
provide the basis for representing visual programs. Attributed multiset grammars remove the notion of ordering present
in a string grammar, such attributes are an integral part of the parsing. Details of work in visual languages and grammars
can be found in [2-7, 10, 16-17] and in particular the work of Golin [8-9], which we refer to for our discussion on
parsing, whilst inductive logic programming is described in [21-23].

2. ATTRIBUTE GRAMMARS

Attribute grammars are ‘ context free grammars’ with formal devices (attributes, evaluation rules, or conditions), which
enable non-context free aspects to be specified. In the literature, ‘ constraint grammars’ appear, which can be considered
as ‘attribute grammars', in addition to ‘relational grammars which are members of the ‘constraint’ set of grammars.

* Correspondence : P.G.Ducksbury, Email : p.ducksbury@signal.ginetig.com
1 claimed to avoid cyclic derivations.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Each symbol may have an attribute associated with it and each attribute may have a domain of values as well as alogical
condition that expresses some constraint. The value associated with an occurrence of an attribute in a tree is determined
by evaluation rules, which are associated with the grammar’ s production rules. The ability to associate an attribute, or a
set of attributes, makes the use of grammars far more desirable. Attributed multisets are an unordered collection of
attributed symbols, which provide the basis for representing visual programs, whilst attributed multiset grammars
remove the notion of ordering present in a string grammar. The attributes are an integral part of the parsing.

3. GRAMMARSFOR IMAGE UNDERSTANDING

Many of the picture grammar papers in the literature are based on building graphs from an edge structure within an
image. This work |ooks at higher level aspects and makes the assumption that some level of image processing has been
applied so that components, and/or, objects have been detected possibly with some associated confidence level.

3.1 Vehicle I dentification

An example used to demonstrate the approach, is that of recognising vehicle types given some symbolic input. This
exampleisrelevant from a surveillance consideration, for example, vehicle type, colour, vehicle recognition number and
distinguishing marks, etc can all be used to recognise vehicles with false registration plates. Consider some simple
symbolic representations of vehicles as shown in figure 1, the relationship between the basic components being shown in
figure 2. Here the vehicle headlights need to be within some relatively tight set of constraints compared with the grill. If
this was not the case we could be in a position in which we are parsing the (possible) fog lights and not finding a suitable
grill/badge in between. In addition to this, the orientation of some headlights relative to the grill acts as a discriminating
factor, as well as, measurement inaccuracies from the feature detection stage for the individual components and the fact
that vehicles may be parked on a sideways gradient. The grammar productions are generally written with only one or
two symbols on the right hand side?. We can now derive a set of rules (written in Golin’s [8] notation) of the following

form:

1 ca—> car-audi

2 ca— car-vwl

3 ca— car-vw2

4 ca— car-fordl

5 ca— car-ford2

6 ca— car-ford3

7 car-audi > left_of (rectangle, remainder-audi)
8 remainder-audi — left_of(radiator-audi, rectangle)

9 ca-vwl— left_of (rectangle, remainder-vw1)
10 remainder-vwl — left_of(radiator-vw, rectangle)

11 car-vw2 — left_of(circle, remainder-vw2)

12 remainder-vw2 — left_of(radiator-vw,circle)

13 car-fordl —» left_of(circle, remainder-fordl)
14 remainder-fordl — left_of(radiator-ford, circle)

15 car-ford2 » left_of (rectangle, remainder-ford2)
16 remainder-ford2 — left_of(radiator-ford, rectangle)
17 car-ford3 —» left_of (ellipse, remainder-ford3)

18 remainder-ford3 — left_of(radiator-ford, ellipse)
19 radiator-audi —> contains(grill-audi, badge-audi)
19 radiator-audi —> grill-audi

20 radiator-vw — contains(grill-vw, badge-vw)
20 radiator-vw — grill-vw

21 radiator-ford — containg(grill-ford, badge-ford)
21 radiator-ford — grill-ford

2 Production rules with more than two symbols on the right hand side are rewritten with additional sub rules.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

22 contains — contai nsoperator
Val(contains) « Val(xs;,xf1,ys;,yf1,XC,yc)
Condition : Val(contains)
(xc>xs " xc <xfy) ~ (yc>ys; " ye < yfy)
23 leftof —» | eftof operator
Val(leftof) « Val(cy,Cp,C3,XS1,Xf1, YS1,YF1 XS, XF 2, ¥S,,¥120)
Condition : Val(contains)
(Xs1 < x8p) M (XFy < xF) M (XFy <XS) N (| X2 —xfy [<€) 7
(lysl—ys2|<c2) " (|yf1-yf2|<c3) " (B <+cy)

24 badge-audi — BADGE-A

25 badge-vw — BADGE-VW
26 badge-ford — BADGE-FORD
27 grill-audi - trapezium

28 grill-vw —» trapezium

29 grill-ford —» ellipse

30 rectangle —» RECTANGLE
31 circle—> CIRCLE

32 dlipse > ELLIPSE

33 trapezium — TRAPEZIUM

The above grammar can be represented simply in a 2D table that can be parsed by the software along with asimilar table
representing a potential object. This grammar definition is not all encompassing, but does make the parsing process
simpler.

Using the parsing algorithm (figure 4) described in Golin’'s paper [8], a parse tree can be produced for a particular input
consisting of a set of circles (C), trapeziums (T), badges (B) and rectangles (R). An example is shown in figure 5 in
which it can be seen that invalid hypotheses develop as the initial parsing proceeds, these are then refined as the parsing
continues.

4. EVIDENCE FUSION

Probabilities of detection of individual components have been included into this grammar scheme by means of a
quantised distribution representing the belief in an object (currently used as a hypothesis with 5 states of belief ranging
from low through to high). The probabilities are used as input in the layout file and represent an approximate distribution
centred on the level of belief. These probabilities are fused using a simple belief network type of approach. Each
grammar rule, which joins two nodes (hypotheses X and Y) together into a new hypothesis Z, applies the following
belief equation

BEL(Z)= azk: P(Zi \X i Y)ﬂ(xj Je(y)

o isanormalising factor and n() the causal evidence from the two rules that are being combined whilst the P() is the set
of prior probabilities, theindexes i, j and k range over the 5 states of belief, afull derivation of the belief equations are to
be found in [24]. The prior probabilities are currently constructed according to the following rules®

09 if i=j=k
07 it (i=j)a(fi-k<1)
~Jos it (i=k)a(fi-il<)
P(Zi|xj,Yk)— 06 it (i=i)n(li-kb1) such that 'ZkP(Zi‘Xj,ijsl Vi
01 it (i=k)a([i-i>1))
0.1 otherwise

3 Thiswill eventually be replaced with amore formal representation of the prior knowledge, given suitable training data.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

These rules construct a banded three dimensional matrix which has the effect of clustering similar input evidence
together. At present these probabilities are filtered through the tree as the parser dynamically constructs it. However,
there is no reason why the computed belief value could not be included with the attributes of the grammar rulesin some
way, thus the construction of the tree would depend upon the evidence filtering through it. In addition to this, each rule
that combines other pairs of rules should idealy have its own independent copy of a more suitable conditional
probability matrix (lack of training data has currently prevented this).

5. LEARNING GRAMMARSUSING GENETIC ALGORITHMS

One of the difficulties that has been apparent in applying image processing algorithms not just for automatic target
recognition but also for associated tasks in image processing and understanding is that of the optimal choice of
parameters and algorithms. In previous work [20] we used genetic algorithms (GA) to optimise the selection of
parameters and algorithms for feature detection, here we consider them for the task of learning a grammar for object
recognition.

5.1 Search Strategies

The problem we are addressing is essentially a constrained optimisation one. Whenever a constraint is violated the
solution would be infeasible and should therefore have no fitness value. In some highly constrained domains obtaining
feasible points may prove to be a difficult task. Penalty type methods try to obtain information from infeasible solutions
by the degrading of the fitness in relation to the relative degradation in the constraint violation. This approach is
somewhat difficult in our domain as the objective function is actually ‘the parsing of a grammar’ and it may not be
possible to parse an infeasible grammar”. Different GA strategies for searching are described by Goldberg [18].

5.2 Grammar Encoding

Encoding of the grammar is achieved using a simple intuitive and direct mapping of the rules into strings, figure 3. Each
rule of the grammar is therefore encoded into a bit string with distinct substrings representing the left hand side, right
hand side, spatial operators, terminal symbols etc. Given this encoding an initial population of grammars can be built by
randomly generating two-dimensional matrices of bit strings. Constraints are applied which cause the remova of
infeasible grammars, e.g.

e Spatial operators and terminal symbols to be limited to some predefined set (i.e. left-of, right-of, in-front,
behind, contains)

o No spatial operator chosen implies there can be only one right hand side for arule

e Spatial operator chosen implies there must be two right hand sides for arule

¢ Rule numbers are to be constrained to some valid set

¢ Rulesare not to be recursive

¢ Rules must be allowed to reference the terminal set

These constraints result in a highly constrained but feasible population. Given this initial population we can now
perform the operations of crossover and mutation as described below.

5.3 Crossover and M utation

In performing crossover we are essentially playing a game of mix and match with members of the population that are
highly correlated with previous success. When it comes to the operations of crossover and mutation a variety of
different approaches exist, for example see Goldberg [18]. The current approach consists of a combination of an €litist
strategy with a tournament selection, all members being chosen using a roulette wheel based selection strategy as
described below.

4 It may be interesting to incorporate some form of sensitivity analysis to see if information can be gained from infeasible grammars,
e.g. isit possible to parse parts of grammar to obtain some useful information.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

The dlitist approach copies the ‘best’ solutions from one generation to the next thereby guaranteeing that the GA never
loses its best solutions. The tournament selection chooses one member at random from the population as a parent and
then chooses two others, these then essentially compete for the right to breed with the first chosen parent based on which
of the two has the highest confidence measure. Roulette wheel selection® is used whenever it is required to choose a
member of the population at random. Individual slots within the wheel are weighted in proportion to the members
confidence measure (or fitness value). The crossover of the selected parents is done by a simple exchange of substrings
between the two, the location within the parents being randomly chosen. If the new members are either infeasible or
duplicates, then they are rejected on the grounds that they would waste valuable population space and reduce the
diversity. This crossover process continues to iterate until a new population has been generated. The mutation operation
again consists of choosing members at random using the roulette wheel selection and then mutating just a single bit
within the string chosen at random.

The next required stage prior to the application of the GA is to produce the cost (fitness function), C, to assess to how
good isaparticular grammar in the population. Thisis defined as

ce M T

(M-ee) ™

where T, is the maximum number of terminal nodes reachable from a single path within the parse tree, N, is the number
of nodes in the parse tree that have two children, T, the number of terminal symbols in the object configuration and r is
2. The first part of the cost function measures the ratio of the number of rules that combine other rules versus the
maximum combination of 2 from the set, whilst the second part measures how many terminal nodes are reachable during
the parse.

6. INDUCTIVE LOGIC PROGRAMMING

Machine learning (ML) is awell-established branch of artificial intelligence (Al). It concerns the ability of a machineto
automatically improve its performance at a particular task in response to experience. ML is a wide field covering many
types of techniques and the applications into which these techniques can be employed. On the whole, techniques can be
classified as symbolic and sub-symbolic. The distinction between these two types of technique concerns the data
representations that are manipulated during the learning process.

Symbolic techniques manipulate representations of whole concepts with respect to the domain in question. For example,
the concept of a main battle tank may be represented by the symbol ‘Tank’ by the learning algorithm. When the
learning process outputs a learnt hypothesis, a solution to the set problem, it can be understood in terms of the
constituent components because these will correspond to original whole concepts. In other words, these techniques are
transparent as an observer can interrogate the learned hypothesis to discover its meaning in terms of the inputs.

Sub-symbolic techniques, however, manipulate representations that do not correspond to whole concepts. In many
cases, the representations of whole concepts are broken down into smaller ‘sub-symbols before being input into the
learning algorithm. Normally, these ‘sub-symbols are single bits where whole bit strings correspond to concepts.
Because the learning process manipulates the inputs at the ‘sub-symbol’ level it is extremely difficult to perfectly
understand the hypothesis, or in fact its derivation, in terms of the original concepts. Such systems are said to be opaque
and so are not forthcoming to interrogation. However, such sub-symbolic techniques are widely deployed because of
the robustness of such representations.

The different representations can be employed to reflect the various data granularities and features that occur within a
complex environment. For example, initial image analysis at the pixel level is suited to sub-symbolic techniques as
there are no higher-level conceptsto represent. Each pixel can be represented as a bit string. Symbolic techniques could

® |t may be a possiblity that a strategy that is based upon the combination of elitism, tournament and roulette wheel
selection is providing to much selective pressure and could be leading to premature convergence.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

then be employed once higher-level concepts have been evaluated, for example, for learning picture grammars
previously discussed. The main advantage of symbolic techniquesis the audit trails they can provide.

GA'’s are a machine learning technique that falls into both the symbolic and sub-symbolic classes, depending on the
particular decomposition of concept for the problem to be considered.

Inductive logic programming (ILP) [21-23] is the area of ML described as the intersection between inductive learning
and logic programming. Its knowledge representation strategy is based on a subset of first order logic known as Horn
clause logic. The logic programming language Prolog is typically used to represent both the training examples and the
resultant induced set of rules.

The inputs to an ILP system are the example set and background knowledge. First order logic provides an expressive
knowledge representation strategy that allows the use of expert background knowledge of the problem domain to
augment the examples during learning. In most ILP systems, the example set consists of both positive and negative
examples of the concept whose description is to be induced. The background knowledge is prior information that may
be used to guide the search. The output of an ILP system is the learnt hypothesis. Inducing a logic program involves
searching through the hypothesis space of all possible logic programs and ILP uses the generality ordering of hypotheses
to guide the search. If a hypothesis is shown to cover a particular negative example, it is too general and must be
specialised. If it is shown not to cover a particular positive example, it is too specific and must be generalised. Using
this ordering, the search space is afeasibly small subset of the infinite hypothesis space available.

This setting for learning first-order rules also has the advantage that it can describe interactions or relationships between
components. For example, the member predicate in Prolog takes asingleitem and alist of items as input and returns true
if the item is a member of the given list and false otherwise. A training set could consist of the examples given in table
1. The correct description of the membership concept is the following:

member(X,[X]).
member(X,[Y [Z]) :- member(X,2).

This means that, an item is amember of alistif it isidentical to the first element in the list and an item is a member of a
listif it is not identical to the first element but is a member of the rest of thelist.

6.1 Training

The experience provided to a learner typicaly takes the form of alist of observations from the real world known as a
training set. For concept learning, atraining example is a specific instance of a concept. For example, an instance of the
concept of parenthood may be the fact Jane is a parent of John. If Jane is John's parent, then the above example is
positive. If sheis not, then it is a negative example of the concept. Training examples often take the form of attribute-
value pairs, for example <first name = John> and <mother = Jane>. Others are represented as facts in first order
predicate logic, for example, mother (John, Jane). The representation of training examples depends on the problem
domain and the ML technique to be employed.

6.2 Testing

The aim of an inductive ML agorithm is to find a hypothesis that fits all of the training examples, i.e. that classifies
them correctly. Once a hypothesis has been learnt, it must be evaluated before its deployment can be considered. For
this reason, another example set is required in order to test and quantify the performance of the hypothesis. This
example set is known as a test set. Usualy, the training and test sets are derived from the set of original observations.
The performance of the hypothesis over the test set can be measured using various well-known metrics. Solutions
derived through the use of different ML techniques can also be compared using the same test sets. Example data came
from a 3D aircraft database (figure 9) and consisted of lines forming the outline of an aircraft, start point co-ordinates,
end point co-ordinates and elevation. Ten different types of aircraft where used at 12 orientations (taken at 15° intervals).
The background information being general ‘line’ relations, including proximity, junction, triple junction, same length,
proper parallel and right angle.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Two concept learning approaches where employed, firstly using two types of aircraft and all orientations and secondly
using all types of aircraft with single orientation. In addition to this the impact of different types of background
knowledge was explored.

7.RESULTS

Taking the manually constructed grammar from Section 3, together with the original vehicle layout and applying the
parsing algorithm of figure 4 produces the constructed tree shown in figure 5. It can be seen from this that a number of
multiple hypotheses are generated, for instance the two that are indicated show the parse of aradiator for a VW with no
badge and similarly for an Audi. The tree also contains three root nodes, two of which are considered to be
invalid/infeasible hypotheses. For example, the root nodes ‘21’ and '22' do not generate valid parses of the tree whilst
root node ‘20" does. The example grammar shown can correctly parse a variety of simple symbolic representations of
the fronts of carsincluding those with missing badges. A number of issues arise from this and need to be addressed :

o Multiple parses may be created some of which may be invalid. Once a tree is generated a valid parse must be
obtained fromiit.

o Undeveloped nodes may exist, i.e. these are nodes that cannot be reached from the root node (infeasible parses)

o Overlapping trees (overlapping grammars), since a given node may have more than one path through it.

The problem of multiple parses can be dealt with by recursively searching the tree from each of its root nodes to ensure
that we can reach al the terminal symbols corresponding to objects in the vehicle layout (i.e. we can produce a spanning
tree covering al terminal symbols). The issue of undeveloped nodes we choose to ignore for the present, as they start off
as locally correct but then become globally incorrect as the parse develops. They have become ‘infeasible’ and can not
be reached from the root node/s. The issue of overlapping trees can be detected by having a counter on each node that
records the number of other nodes pointing into it, this could then be reported.

Taking the automatically constructed grammars, figure 6 illustrates a parse from a grammar produced during the
evolution process, in which, not all objects have been linked together. Figure 7 shows a parse produced by a grammar
after convergence has been achieved, all objects now being linked together. A small test set of 20 vehicle layouts was
used and included invalid configurations such as vehicles with a circular headlight on one side and rectangular on the
other side. Figure 8 shows a graph illustrating a characteristic of this particular genetic algorithm, namely the
convergence with varying population sizes. For populations which are too small we can see that convergence to a global
optimum has failed (the process being locked into a local minimum — the lower lines on the graph) whereas with the
larger populations we move to the locality of a good solution more quickly. Goldberg [18] pointed out that De Jong [19]
had observed that improved results could be obtained with reduced €litist percentages on some functions and suggested
that elitism can improve local search at the expense of a global perspective.

For inductive logic programming, figure 9 illustrates some examples of boundaries extracted from 3D views of the given
aircraft. From these, the line segment information was used to learn the hypothesis. Figure 10 shows the marked line
segments that where learnt for recognising an A10 and a Saab-105 respectively. The learnt hypotheses being,

A10: SAAB 105:
part of (A,B), right_angle(A,B),
proper_paralel(C,B), triple_junction(C,A,B),
right_angle(C,D), same_length(C,D),
proper_paralel(E,D), same_length(E,F),
right_angle(B,D) proper_paralel(G,E),

proper_parallel(H,I),
proper_paralel(H,J),
proper_paralel(H,K).

In the case of the SAAB the last three primitives were learnt as part of the hypothesis but weren’t needed for actual
recognition.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

8. CONCLUSIONS

These examples have shown that it is possible to write down an attributed grammar. These grammars can then assist in
the recognition of objects. Some of the difficulties with picture layout grammars and/or multiset grammars are the
requirements that are enforced for explicitly representing al spatial relationships, the difficulties in writing out a
grammar manually® and the complexity of the grammar for realistic detection. It has also been demonstrated that in
principle a genetic algorithm is a suitable search mechanism for automatically learning the structure of a picture
grammar. A number of generic issues remain however. Multiple and missing objects. Multiple objects, due to the
situation where feature detectors produce more objects, say, for example, additional rectangles around the actual vehicle,
should not pose any difficulties. Either the attributes within the grammar should remove these or they are accepted into
the tree, then, if the correct vehicle is there anyway then this is effectively a subset of the tree’. For missing objects,
additional rules can be included to deal with this situation explicitly. In the case of the learnt grammars it has been
possible to generate grammars that describe individual vehicle types/models but not grammars that describe all vehicles
or all models for some vehicle type. The difficulty has been the convergence with the population becoming locked into
local minima, as well as multiple and redundant rules being evolved within the grammar which may be using up
valuable search space. The later could be removed during the population generation, crossover and mutation by
application of a uniqueness test to the parts of the bit string that correspond to the spatial operators, and the right hand
side. The ILP can reduce the difficulty in specifying all the specific spatial relationships in a grammar by learning at a
symbolic level. We would however, envisage a multi-functional and hierarchical approach in which both ILP and picture
grammars worked together to assist in recognition of objects.

9. ACKNOWLEDGEMENTS

This research was sponsored by the United Kingdom Ministry of Defence, Corporate Research Programme, TG10. ©
Copyright QinetiQ Ltd 2003. We aso acknowledge Emma Peeling for the contribution towards ILP implementation as
well astesting and evaluation.

10. REFERENCES

1. R. Bardohl, G. Taentzer, M. Minas, A. Schiirr, ‘Application Of Graph Transformation To Visual Languages
(1998), In H. Ehrig, et a., Handbook of Graph Grammars and Computing by Graph Transformation, volume I1;
Applications, Languages and Tools, pages 105-180. World Scientific, 1999.

2. Wittenburg, K., and L. Weitzman, ‘Relational Grammars: Theory and Practice in a Visual Language Interface for
Process Modeling'. In Proceedings of Workshop on Theory of Visual Languages, May 30, 1996, Gubbio, Italy.

3. Haardev, V., A fully formalized theory for describing visual notations', Proceedings of the AV1'96 post-conference
Workshop on Theory of Visual Languages, Gubbio,ltaly, 1996.

4. J. Rekers and Andy Schurr, ‘Defining and Parsing Visual Languages with Layered Graph Grammars', Journal of
Visual Languages and Computing, vol 8 no 1, p 27-55, 1997.

5. CostagliolaG., et a., ‘ Automatic parser generation for pictorial language’, |IEEE Proc 1993, Symposium on visual

languages, 1993.
6. Flasinski M., ‘Parsing of edNL C-graph grammars for scene analysis’, Pattern Recognition, vol 21, no 6, 623-629,
1988.

7. ShuNan C., ‘Visual programming languages — a perspective and dimensional analysis’, Visual Languages, Plenuim
Press, 1986, p11-34.

8. Golin E.J, ‘Parsing visual languages with picture layout grammars’, Journal of Visual Languages and Computing,
2(4) : 371-394, 1991.

9. Golin EJ, Reiss S.P., ‘The specification of visual language syntax’, in Proc |EEE workshop on visual languages,
Rome, Italy, Oct 1989, pp 105-110.

10. Chang SK., ‘Visual languages : A tutorial and survey’, IEEE Software, vol 4, pp 29-39, Jan 1987.

® Even the examples shown here have proved to be error prone
" A more advanced tree search mechanism is required.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

11.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.

22.
23.

24,

Prograph, http://pictorius.com/prograph.html

Labview, http://amp.ni.com/niwc/labview

IRIS, http://www.nag.co.uk/Welcome |EC.html

Brown M.H., ‘Exploring algorithms using Balsall’, Computer, vol 21, no 5, May 1988, pp 14-36.

Smith R.B, (Xerox Parc.), ‘ Experiences with the Alternative Readlity Kit’, IEEE CG& A, 7(9):42-50,Sept 87.

Chok S., Marriot K., ‘Parsing Visual Languages, In 18" Australasian Computer Science Conference, Glenog,
South Australia, 1995.

Proc IEEE Symposium on visual languages, Los Amitos, CA, |EEE Computer Society Press, 1995 — 1997.
Goldberg D. E., ‘ Genetic Algorithms in Search, Optimisation and Machine Learning’, Addison Wesley, 1989.

De Jong K.A., ‘An analysis of the behaviour of a class of genetic adaptive systems’, Doctoral dissertation,
University of Michigan, 1975.

Ducksbury P.G., Varga M.J., Kent P.J., Foulkes S., Booth D.M., ‘Genetic algorithms for automatic algorithm and
parameter selection in ATR applications’, SPIE Aerosense-98, vol 3371, 11-17 April, Orlando 1998.

Lavrat N., DZeroski S., “Inductive Logic Programming: Techniques and Applications’ . Artificial Intelligence
Series, Ellis Horwood (Simon & Schuster), 1994

Muggleton S., “Inductive Logic Programming” . Academic Press, London, 1992.

Muggleton S., DeRaedt L., “Inductive Logic Programming: Theory and Methods’. Journal of Logic Programming
19/20: 629 - 679, 1994.

Ducksbury P.G., Varga M.J., ‘ Feature detection and fusion for intelligent compression’, SPIE Aerosense 2001, vol
4380, April 16-20, 2001.

A==
OT& oD

Figure 1; Example vehicle layouts Figure 2; Vehicle alignments

oji1jJo0fr2jofofrjojofrfr1j1yj0j|0f21|(0]1]|0O0

- AN J
Y V
P3 P4
P2 Right Hand Side part 1 Right Hand side part 2

Operator, e.g. |eft-of, contains etc

P1
No of parameters, used for flow control

Figure 3; Genetic Algorithm encoding for grammar generation

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Input : An attributed multiset grammar and object layout (M)
Output 1 A parsetree
Initialisation : set tree, todo and done to empty

foreachb € M do
add aterminal node for b to todo and tree
while todo is not empty do
let next = an element of todo, with X = symbol (X)
for each production such that X occursin the RHS do
if (production = A — {X}) and all constraints are satisfied then
add a node for production to todo and tree
else /* production has two operands */
for each occurrence of X in RHS of production do
let Y be the other symbol in production
for each old in done such that Y = symbol(old) do
if all constraints are satisfied then
add a node for production to todo and tree

remove next from todo and add it to done

repest
Figure 4; Golin’s Parsing algorithm

Radiator for WV
with no badge

(@ ©

20

e\

X 19 .
Input Vehicle (R T, B,R)

21 X
22 @ ==

Figure 5; Parse tree

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

Figure 7, Parse tree from evolved grammar — after

convergence

& i) Positive Examples Negative Examples

i Item | List Item List

5 . a [a,b,c] 3 [2,4,6]

i 1 [1,3,5,7,9] w [x,y,2]

i1 3 [1,1,2,34811] |1 [2,3,4,5,6]
o c [a,1,b,2,c,3] d [a,1,b,2,c,3]
(1] g [h]

e . Table1, ILP

Figure 8, Grammar Convergence

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

PLAMNE alO0thiio "Thunderbolt" PLAMNE adshO
\H)/J__Q_IL% I)K

PLANE alOthii30 PLANE a4sh30

A 3

Figure 9, Example aircraft outlines

'3

Figure 10, Recognised segments, A10 Thunderbolt and SAAB 105

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

http://www.pdffactory.com

