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ABSTRACT

In previous work [1] a novel approach was described which used automatic target detection together with compression
techniques to achieve intelligent compression by exploiting knowledge of the image content. In this paper an extension to
this work is presented in which a set of standard feature detectors such as HV-quadtrees, approximate entropy and phase
congruency are used as target discriminators. These detectors all attempt to find potential areas of interest within an image
but will undoubtedly be dightly different in their estimates. A probabilistic (Bayesian belief) network is then used to fuse
thisinformation into a single hypothesis of ‘interesting areas within an image. A wavel et-based decomposition can then be
applied to the image in which sdlective destruction of wavelet coefficientsis performed outside the cued areas of interest (in
effect concentrating the wavelet information into the required areas) prior to the encoding with a version of the progressive
SPIHT encoder [8]. One of the difficulties with this approach can be when large quantities of wavelet coefficients are
discarded, this can potentially lead to abrupt changes at a mask boundary resulting in (visually) undesirable effects in the
recongtructed image. An improvement to this is to modify the fused feature image using morphology inorder to arrive at a
multi-level fuzzy mask. This can then be used to gradually reduce the significance of coefficients as the distance from the
mask increases. Results will illustrate how this approach can be used for the detection and compression of arborne
reconnai ssance imagery
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1. INTRODUCTION

The application of this work has been mainly in the area of analysing 8-bit airborne imagery. It is important that we can
automatically detect targets of interest and be able to achieve good compression ratios as well as making sure that the
important targets and areas of interest are not removed or degraded. As a result of these requirements coupled with the
desire not to invent new and specific feature detectors, [1] described the use of quadtrees [2] and entropy [3-6] as methods
for locating areas of interest within imagery. This has now been extended to aso include results from phase congruency
[27,28] aswell asthe combination of all three techniques using a belief network and the introduction of fuzzy masks.

A standard quadtree [2] based approach is modified so that it can be used as a target discriminator using the more advanced
horizontal-vertical (HV) partitioning scheme. This partitioning attempts to make edges within the image run diagonally
through a partition and thus divide a region into two subregions, if this is not possble it reverts to the standard
decomposition into four sub-regions of equal size. Results will illustrate how the technique is more flexible than the
standard quadtree resulting in significantly less regions in the decomposition. Entropy, approximate entropy and phase
congruency have been used as an alternative to quadtrees and can lead to improved region cueing. In particular the phase
congruency has proven to be an excellent technique for the detection of fine scale linear features. All techniques have their
advantages and disadvantages for this reason a belief network was used to combine results from all three probabilistically.

The cued regions of interest obtained from the feature detection stage are subsequently compressed using an ‘intelligent’
image compression technique. The technique allows for selective compression to preserve detail in the key areas within the
imagery using a wavelet based approach over the entire image but with different levels of compression at different image
locations, we are hence cueing the wavelet information into desired areas. Various standard compression/coding algorithms
where considered including MTWC [7], SPIHT [8,9] which is based upon an extension to the embedded zerotree wavelet
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(EZW) work of Shapiro [10], CREW [11], Vector Quantisation schemes [12,13], Fractal [14], JPEG, wavelet, aswell asthe
losdess JPEG (JPEG-LS) [15-17]. Of these the SPIHT agorithm was chosen as being the most suitable.  Sections 2-4
describe the target detection using quadtrees, entropy & approximate entropy and phase congruency whilst section 5
overviews the belief network approach to evidence fusion. Section 6 discusses the introduction of fuzzy masks whilst
sections 7 and 8 deal with the actual compression and encoding aspects.

2. FEATURE DETECTION - QUADTREES

Quadtrees are used as an attempt to do a generic and automatic cueing of areas of interest without the need to invent a new
set of feature detection algorithms. A quadtree essentially a recursive decomposition of an image in which at each leve the
image is decomposed in its smplest form by a factor of 2 in both its x and y directions until some suitable criteria is
satisfied. Here atextural measure based on edge data and statistical variance within an image portion is used.

More advanced partitioning methods are available such as HV partitioning which is more flexible than the standard quadtree
as the position of the partition is not fixed where the image can be partitioned either horizontally or vertically and not by a
direct subdivision by 2. The HV decomposition technique attempts to make image edges run diagonally through a partition.
In addition there is also triangular partitioning in which the triangles can have any orientation. In the example shown in
figure 1 an image with the standard and an improved (HV) quadtree overlayed is shown, whilst figure 2 shows part of the
actual quadtree® for the standard version on the left of figure 1. Results have suggested that the HV technique can
potentially offer a decomposition with up to 75% less rectangles. The HV version here is a modified one in which the
algorithm will revert to the standard quadtree if no horizontal/vertical division can be easily detected. Wherever possible an
image is split into two regions (either horizontal or vertical) using an analysis of the two profiles obtained by forming a
summation of the current regions gradient information in the appropriate direction. The most dominant profile will
ultimately determine the type of decomposition. Initial results show that the techniqueis feasible. In fact it can be seen from
figure 1 that the quadtree version on the right is somewhat superior in terms of the reduced number of rectangles required to
represent the area of interest. Although it will be noticed that both versions have failed to isolate al areas of interest but do
provide an approximate cueing for an area.

3. FEATURE DETECTION - ENTROPY

Entropy is a measure of randomness (or uncertainty) within some given dataset, the more random the data the more entropy
[4,19]. Entropy is defined as

H(X)° & p,logp,

X W

For example a region with a single gray level value would have a distribution p with just a single pesk and an entropy
measure of zero. For a section of sky the gray level distribution would be unimodal and therefore have a low entropy
measure, whereas for a section with a more typical and varied image content the distribution would be more widespread and
have greater entropy. The initia intention was to use the basic entropy as a measure of saliency within an image to highlight
aress of interest. Unfortunately in the experiments carried out the standard entropy was very good at excluding areas (e.g.
sky) but had a tendency to include too much other information within an image and any subsequent mask generated from
this would be swamped by potential areas of interest.

Approximate Entropy [4,5,6] is a measure of unpredictability of a sequence of values.
1 & i
f,n=-—alogC, and ApEn=f  -f
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Where N, isthe number of strings of length mwhich can be taken from a sequence and Crin is the number of strings which
match gtringi.

m

1 Thetree shown hereis not fully decomposed, the nodes indicated in black would be decomposed further. Branches without nodes are

leaf nodes with no further decomposition, ordering for the quadtreeistop left, top right, bottom left, bottom right.



Approximate entropy is similar to the standard entropy measure except that it is based on the frequencies of spatia
configurations of pixels, rather than simply on the relative frequencies of individual pixe gray levels.

Figure 3 (left) shows the result of applying the approximate entropy to the image of figure 1. The darker areas indicate
salient regions within the image and clearly show the main target of interest together with a certain (but not excessive)
amount of background features.

4. FEATURE DETECTION - PHASE CONGRUENCY

Until recently, feature detection has largely comprised edge and corner detection. Edges are usually considered to be
intengity changes that are locally one-dimensional whilst corners are intensity changes that are locally two-dimensional.
The designs of most edge detectors have essentially been optimised for the detection and localisation of step changes in
intensity. It is however well known that phase carries (most of) the important information about a signal [34], most current
edge detectors devel oped for image analysis retain only amplitude information. Kovesi [27] points out, this not only causes
them to fail to detect features of interest, it reduces markedly their invariance to intensity contrast, and makes them sensitive
to thresholds.

Many intensity changes of interest in our applications are not at all step-like. Thereisasingle characterigtic that (all) image
features (luminance profiles that humans perceive as places of interest) have in common, namely that in the (short term, or
windowed [26]) Fourier domain (all) frequency components over a wide range of octaves are maximally in phase [35]. The
actual angle at which this phase-congruency occurs is characteristic of the type of feature. eg for a +ve step in intensity all
local (windowed) Fourier components will have a phase of 0, a -ve step will have phase p, a +veridge p/2, a -ve ridge
3p/2. The observation suggests that the concept of a 'feature is defined as an image location at which there is a local
congruence of phase. The technique is invariant to local image contrast. That is, will generate the same features for
compression irrespective of the contrast and brightness of the image. Phase Congruency [35] can be defined as
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where A, is the amplitude of the "™ Fourier component and f ,(x) isthe local phase of the Fourier component at x. The value

f (x) that maximises the equation is the amplitude weighted mean local phase angle of all Fourier terms at the point being
considered. However an alternative [36] isto search for peaksin thelocal energy function

E(x)=VF?(x)+ H*(x)

where F(x) is the signal with the DC component removed and H(X) is the Hilbert transform of F(x). For two dimensiona
imagery the one dimensional processis computed at a set of different orientations, refer Koves [27] for full details.

Figure 3 (right) illustrates this technique, standard edge detection techniques such as Sobel and Canny will perform very
poorly on fine scale structure present in the images.

5. FUSION - BELIEF NETWORK

Previous work has considered the use of belief networks in image processing for the detection of urban regions, driveable
regions in autonomous land vehicle imagery and improved vehicle detection in airborne imagery [29 - 32]. Pearl’s Bayes
networks are directed acyclic graphs, see figure 4 (left). In this graph nodes B, C and E represent different statistical
information extracted from the image, whilst node A representsthe ‘belief’ in detecting an urban patch. A graph Gisapair
of sets (V, A) for which Vis non-empty. The dements of V are vertices (nodes) and the eements of A are pairs (X,y) called



arcs (links) with x T Vandy1 V. Consider the smple network that is shown in figure 4 (l&ft). The equations for computing
belief and propagation of information are given in the following sections’.

5.1 Belief Equations

Consider the link from node B to A then the graph G consists of the two subgraphs G'ga and Ga. These two subgraphs
contain the datasets D*ga and D'ga respectively.

From figure 4 it can be observed that node A separates the two subgraphs G'sa E G'ca E G'ea and G ar. Given this fact
we can write the equation:

P(DHA,D;A, D&,D;A): P(Dse|A) (1)

by using Bayes rule the belief in A; can be defined as:

P(A D, D& D, D)
a.P(A|Dz,. DG, D). P(Dir|A) )
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where a istaken to be anormalising constant and i, j, k and | range of the number of variablesin A, B, C and E respectively.
It can be seen from figure 4 that this equation is computed using three types of information:

Causal support p (fromthe incoming links).
Diagnostic support | (fromthe outgoing links).

A fixed conditional probability matrix (which relates A with itsimmediate causes B, C and E).

The equations which form the above information are given as follows. Firstly the causal support equations:

p A(Bj ) = P(Bj D;A) (©)
pA(Ck) = P(Ck DgA) 4
pA(EI) = P(EI D;:A) ®)

Secondly, the diagnostic support equation is given by:
| (A)=P(Ds[A) (6)
Finally, the conditional probability matrix is defined to be:

P(AB,C,E) 7

2 The equations are derived along similar lines to those derived by Pearl [32] wherein his example node A has just two predecessors and
two successors.



The belief equation can now be rewritten to obtain the belief at node A based on the observations at B, C and E, eg. the
belief that an urban region is detected:

The belief at nodes B, C and E can be obtained from the equations:

BEL(B,)=ap.(B,)1 A(B)) (9)
BEL(C,)=ap A(C,)-1 A(C\) (10)
BEL(E,)=ap ,(E ).l A(E) (12)

In other words the belief is the resultant product of causal support information, diagnostic support information and prior
knowledge. The propagation equations described bel ow are iterated to support belief of a certain event.

5.2 Propagation Equations

The propagation equations for the network are derived as follows, firstly the diagnostic support. From a previous analogy
with eguation (6) it can be formulated as:

I .(B) = P(D/B) (12)

by partitioning the D;, intoitscomponent parts, namey A, D,. , DS, , D, wecan obtain

I (B)=a8 gJA(Ci).pA(Ek).éI 1.(A). P(A|BI,Ci,Ek)§ (13)

Lc)=aa §a(B)ruE) Al (A)PARLCLE) @4
and

| (E)=a& é}A(BI).pA(Ci).éII (A). P(A|BI,Ci,Ek)§ (15)

5.3 Causal Equations

These are defined using a similar analogy as follows.
p(A)=P(A|Da. D:. D) (16)

and from this we then derive the equation

po()=ag P(AlB.C E.)p (8 )0 (C.)hp . (E); an



An important point to realise from the equations (13 -15 & 17) is the fact that they demonstrate that the parameters| and p
are orthogonal to each other, i.e. perturbation of one will not affect the other. Hence evidence propagates through a network
and thereis no reflection at boundaries.

The idea behind using the belief network approach has been to combine multiple sources of information (evidence) in a
network to achieve a more mathematically sound result than could be achieved by just applying alogical operation to merge
al theinformation (evidence) together. Here, two scales proved sufficient together with three states (low, medium and high)
for the evidence variable that represented the required region, the actual network used being a smple causal tree, figure 4
(right). By applying this technique a combined mask can be obtained a typical outline of which isshown in figure 7.

6. FUZZY MASKS

One of the problems that has appeared with the cueing of wavelet information is when large quantities of wavelet
coefficients are removed and that it occurs close to an edge of a computed feature mask. This can cause an unnatural and
abrupt trangition in the wavelet coefficients (eg this occurs around the middle of the upward pointing gun barrel in figure
7). One smple solution to this problem is to extend the mask and to apply some increasing coefficient reduction (not
removal) around the edge of the mask.

This process is achieved by employing a repeated application of a morphological dilation operation using a smple circular
5 5 kernel. The resulting multilevel mask is then used in the wavelet encoder to reduce the significance of coefficients by
0%, 25%, 50% and 75% as the distance from mask to background increases. This achieves the desired effect and also due to
the increased size of the mask focuses the removal more onto the background of the imagery (eg rows 1 and 2 of table 1).
Anocther advantage to this approach is that by gradually reducing the magnitude of coefficients there are less bits requiring
to be encoded and subsequently transmitted (eg rows 2 and 3 of table 1).

7. INTELLIGENT IMAGE COMPRESSION

The motivation for using quadtrees, entropy and phase congruency was an attempt to do a generic and automatic cueing of
areas of interest without the need to invent new feature detection agorithms. In [1] a number of standard compression
algorithms where considered in which the wavelet approach was chosen as the most suitable as we can target the wavel ets to
key areas and therefore apply different compression ratios in different image. The standard wavelet decomposition [21,33]
is used together with the simplest (and most localised) Daubechies-4 filter kernel [18]. Figure 5 illustrates this for a 3 level
decomposition in which LH indicates Low-horizontal and High-vertical, HL : High-horizontal and Low-vertical, HH :
High-horizontal and High-vertical whilst LL (not shown) is decomposed into the next level of the pyramid. The inverse
wave et transform then being used to reconstruct the original image.

Figure 6, shows a standard result from wavelet compression, namely that a large percentage of the wavelet coefficients in
the wavelet scale space image can actually be removed yet ill produce a visually good recongtruction. It is apparent
therefore that a relatively small percentage of the wavelet coefficients are concentrated in the highly salient areas of the
image. This is itsaf the main principle behind the technique used here, i.e. use a target mask generated by some saliency
operator to prevent removal of coefficients in key areas of the image. When this is combined with a suitable encoder an
efficient progressive target based compression system is produced.

8. ENCODER

The SPIHT (Set Partitioning In Hierarchical Trees) algorithm® is a wavelet based compression scheme offering good image
quality with high PSNR* it is designed for progressive transmission producing a fully embedded coded file. SPIHT [8,9] is
based upon an extension to the embedded zerotree wavelet (EZW) work of Shapiro [10]. It is a coding method so any
artifacts produced may be due to the wave et transform and not the coding process. The process differs from conventional
wavelet compression in the way in which it encodes the wavelet coefficients. It can also be used for lossess compression as
it codes the bits of the image wavelet transform coefficients in a bit-plane sequence, thus if all bits are encoded the image

3 Theimplementation of the SPIHT algorithm used here does not contain any arithmetic coding.

*opsir = 20Ioglo(2b-}r/m) PSNR is the Pesk Signal to Noise ratio and b is the bit depth with rmse being the root mean
square error.



can be recovered perfectly®. Aswith other techniques error protection is important, but SPIHT’s embedded coding scheme
means that information is sorted according to importance hence the need for error protection reduces towards the end of the
file. The technique is based on three ideas : a tree based representation of the wavelet coefficients (figure 5 - right), partial
magnitude (so that the most important information may be transmitted first) ordering of the coefficients and an ordered hit
plane transmission of refinement bits for the coefficients. As a result of this, both the encoder and decoder know the
gtructure of the data and the algorithm therefore no explicit ordering information needs transmitting. Hence if a coefficient
at a given levd in the hierarchy is ingignificant then those children of that node are also likely to be insignificant. The
algorithm can a so be efficiently implemented using afew list structures.

Figure 10 shows the progressive nature of the SPIHT algorithm for the combined mask®. The first column (top - bottom)
represents 290:1, 130:1 and 60:1 compression whilst the second column (top - bottom) 40:1, 20:1 and 10:1 compression.
For comparison figure 9 shows results of this with the standard JPEG at a ratio of 50:1 (0.16 bits per pixd) with the PSNR
for these images being 26.91 and 22.69 respectively.

9. CONCLUSIONS

The improved mask generated by fusing feature detectors and introducing a fuzzy representation now more accurately
represents features such as for example the gun barrel, which was partially cropped when using the quadtree generated mask
in isolation. Table 1 shows the PSNR figures for several versions of the approach we have described, using a normal fused
mask compared with several version of the fuzzy mask. Although the ssimple fused mask appears better with a psnr of 33.92
thisis due to the additional information present in the image and therefore additional information that requires encoding and
transmission. These resultsillustrate the fact that psnr is probably not the best measure to be used for comparing results for
the more content based (intelligent) compression algorithms. All three sets of results produced reconstructed imagery for
which it would have been difficult for the human observer to notice any differences.

There are a number of issues worth mention in particular, although object detection is a difficult task it is still worthwhile to
produce object masks. If we remove a certain amount of information (e.g. wavelet coefficients) then it is more intuitive to
remove them from undesirable and less sdlient parts of an image rather than removing them indiscriminately’. Despite the
fact that the use of a state-of-the-art codec is being employed it is ill advantageous to attempt to remove non essential
information prior to the encoding process. Typically in the examples shown here, to use a SPIHT codec directly without any
masks and removal of coefficients would have required an additional ~ 500 Khitsto ~ 1 Mbits. Technique have been shown
here that can locate salient parts of an image using several approaches, combine these into a cohesive mask and then use this
to cue the wavel et information to obtain improved compression results.

Photographic interpreters have analysed these results by being presented with a set of the progressive full sized images
shown in figure 10, starting with the most compression and moving towards the least. Their analysis being one of a
hierarchical refinement as the image presented was improved. Therefore protecting key areas and thus enabling these to be
restored more quickly does provide added val ue to the recognition process.
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Figure 1, Left - Standard quadtree decomposition, Right - H-V decomposition

Figure 2, Initial layers of standard quadtree

Figure 3, Left — Approximate Entropy, Right - Phase Congruency
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Figure 5, Wavelet Decomposition

Figure 6, Wave et reconstruction after removal of 30%, 60% and 95% of weakest coefficients.
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3 -

y ks “.- . -. 3 -._' _;r-.:_: -
’ m B LMo T R
Figure 9, Target Detection and Compression @ 50:1 (0.16 bits/pixd). Left - Combined Fuzzy Mask-based wavel e,
Right - JPEG for comparison. The PSNR measurements being 26.91 and 22.69 respectively.

Object Mask Type Tota Bits PSNR

(to encode entireimage) | (full Reconstruction)
Normal (fused) mask 938531 33.92
Fuzzy (fused) mask - no coefficient reduction 735187 31.58
Fuzzy (fused) mask - with coefficient reduction 699347 31.37

Table 1, Mask type vs. file size and PSNR
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Figure 10, Progressive Target B Rstruction - '(Combi ned fuz mask & 7% r ikground)
Left Column, Top — Bottom 290, 130, and 60:1, Right Column, Top - Bottom 40, 20 and 10:1 compression.



