
IMAGE SEGMENTATION 1

Introduction

Over the years there has been numerous papers published on image segmentation techniques,
far too many for even a small subset to be cited here. A few references are however given at
the end of these notes, in particular the paper by Haralick and Shapiro [15] may provide a
useful introduction to the subject.
Image segmentation is the decomposition of an image into a set of disjoint nonoverlapping
regions. The regions should be uniform and homogeneous with respect to some suitable criteria,
such as gray level or texture.
Image segmentation may be performed in order to isolate some object from the background
such as an engineering component in a box, a component on a conveyor belt, roads or urban
regions in airbourne or satellite imagery, objects or roads in forward looking imagery for an
autonomous vehicle. The list is almost endless and there are many techniques that can be used
to segment images. A few of these techniques are described brie
y in these notes, for example,
thresholding, Hough transforms, clustering and Markov Random Fields. For more detail on any
of these techniques the reader is refered to the references or to the vast amounts of information
which are available on the internet, in particular the search engines and bibliographies located
at

� UCLA - `http://iris.usc.edu/Vision-Notes/bibliography/contents.html'

� Rosenfeld's -
`ftp://telos.com/VISION-LIST-ARCHIVE/ROSENFELD-BIBLIOGRAPHY'

� The technical University of the Delft -`http://www.ph.tn.tudelft.nl/biblio.html'

searches of these for work on segmentation will result in an ample amount of bedtime reading
for those interested in taking the subject further.
Also on the internet are many multimedia sites which provide tutorial information on subjects
in image processing in particular

� The hyper-media Image Processing Reference at Edinburgh
`http://www.dai.ed.ac.uk/sta�/personal pages/simonpe/hipr/html/hipr top.htm'.

� The Computer Vision home page located at `http://www.cs.cmu.edu/ cil/vision.html'.

Thresholding

Introduction

The technique of thresholding is particularly useful in image processing as a tool for segmenta-
tion as it is simple and returns the required disjoint, connected regions with closed boundaries.
Essentially, at each pixel a decision is taken regarding its status, either above or below the
chosen threshold. Ideally all image pixels that are below the threshold will be outside the
object, whilst those pixels that are above the threshold will be in the object. This works
well if the object being segmented is of uniform gray level and is well distinguished from its
background.

1Lecture given at course on `Advanced Image Processing', 17-18 April 1996, SIRA technology Cen-
ter,Chislehurst, Kent, UK.



Global, Adaptive and Optimal thresholding

In global thresholding the value of the threshold is maintained at a constant level throughout
the image, this approach being the simplest and being suitable under the previous mentioned
conditions.

For cases where the background gray level varies and perhaps also the contrast of the object
itself adaptive thresholding is useful. A threshold that works well in one area of the image
may be very poor in another area hence it may be desirable to use a threshold that varies with
position. This could be based on some suitable image statistic, Castleman [4] and Kittler [22].

Objects which have smoothly varying boundaries will cause segmentation problems as small
changes in thresholds may produce large changes in the boundaries of the objects. An image
that contains an object against a background has a bimodal histogram, that is one for which
there are two peaks. The �rst (and possibly larger) peak corresponds to the background whilst
the second corresponds to the object. The minimum between the two peaks will correspond
to the pixels that are on and around the boundary between the object and its background.
Optimal thresholding can be used by selecting this optimal point (minimum) between the two
peaks and thus minimising the likelihood of errors in the boundary. There is also the technique
described by Kullback [23] which assumes that the image histogram is composed of a mixture
of two gaussians, the task being to again to locate the optimal threshold.

Although thresholding is very useful it can be di�cult to locate an optimal threshold, particu-
larly if the original image is subject to noise or has a signi�cantly skewed histogram. Another
and newer technique for segmentation which may avoid these problems is called `Region Com-
petition', this attempts to provide a new framework which will unify many of the existing ideas
behind image segmentation. The interested reader is refered to Zhu et. al. [33].

Hough Transforms

Introduction

The idea behind the original Hough transform (Hough [17]) was for the detection of collinear
features within images. This being achieved by mapping features from image space into a
parameter space describing the feature required. The work was later extended to generalised
shapes as described in Ballard [1].

Line and Circle detection

Given a point (xi; yj) together with the equation for a line yi = m:xi + c, there are an in�nite
number of lines that pass through the point (xi; yj). If however we consider the same equation
in parameter space c = �mxi+yi then we have a straight line for a given point (xi; yi). Another
point (xj ; yj) will have a straight line associated with it and this line will intersect the line
associated with (xi; yi) at some point (m

0

; c
0

), �gure 1 illustrates the idea behind this.
Unfortunately this parameterisation experiences di�culties particularly with singularities oc-
curring with near vertical lines asm!1. This is overcome using a di�erent parameterisation

x cos � + y sin � = �

where � is the length of a normal from the origin to the line and � is the orientation of � with



respect to the x-axis. The points (xi; yi) are the coordinates of edge segments
2 in the image.

These points are known and serve as constants in the parametric equation leaving (�; �) as
the unknowns. Plotting possible (�; �) values de�ned by each (xi; yi), then points in image
space map to curves in polar Hough parameter space. This point-to-curve transformation is
the Hough transformation for straight lines.

The algorithm is implemented by applying a quantisation to the parameter space resulting in
a set of �nite intervals (accumulator cells). The algorithm runs on a gradient (edge) image and
for each (xi; yi) in the gradient image space the transformation is applied resulting in a set of
(�; �) parameterisations, the accumulator cells for these are then incremented. Resulting peaks
in the accumulator array correspond to evidence implying straight lines in the image space.
The same procedure can be used for the detection of circles in imagery using the parametric
equation for a circle

(x� a)2 + (y � b)2 = �2

where a and b are the coordinates of the center of the circle and � is the radius.

Figure 2, shows an experiment concerning the segmentation via the location of wheels of a
car. The two black peaks in the lower image corresponding to the location of the wheels of the
vehicle.

Fast Implementations

The disadvantage of the Hough transform technique may appear to be the computational
complexity of the algorithm. However work has been done on fast and parallel versions of the
algorithm together with hardware implementations.
For an overview of some of these see Hussain [18], for various types of parallel and hardware
implementations see for example the papers by Hanahara [14], Chung [5] and Rosenfeld [32].

Clustering via Belief Networks

Introduction

The technique of standard clustering for image segmentation uses the measurement space
clustering process to de�ne a partition in measurement space. Each pixel is then assigned the
label of the cell in the measurement space partition to which it belongs. The image segments
are de�ned as the connected components of the pixels having the same label. The essential
clustering techniques are well documented and again the reader is again refered to the paper
by Haralick [15] for full details.

Clustering of evidence can be used to deal with situations in which the required region to be
segmented is more complex. One technique is that described by Ducksbury [8], [10] and [11]
which uses a Pearl Bayes (Belief) Network to cluster evidence for the location of urban regions
in airborne infra-red linescan images and for the location of driveable regions in autonomous
land vehicle imagery.

The problem is generically de�ned as the location of some region in an image. This problem
will be approached by taking several statistical measures from small patches of an image these
are treated as a set of judgements (virtual evidence in Pearl's notation) about the content of

2obtained after the application of some suitable edge operator (SOBEL, Canny etc)to the image



the patches. This evidence is then combined into a belief of the patch belonging to the de�ned
region. Figure 3 shows a conceptual diagram of the process in which the raw image is at the
bottom of the pyramid with higher levels of extracted knowledge at the following levels.

Pearl Bayes (Belief) Network

De�nition 0.1 Bayesian networks are directed acyclic graphs, such that a graph G is a pair of
sets (V,A) for which V is non-empty. The elements of V are vertices (nodes) and the elements
of A are pairs (x,y) called arcs (links) with x 2 V and y 2 V .

Figure 4, shows a simple Pearl Bayes network (Pearl [27]). If we consider the link from node B to
A then the graph G consists of the two subgraphs G+

BA and G�
BA. These two subgraphs contain

the datasetsD+
BA andD�

BA respectively. Node A separates the two subgraphs G+
BA[G

+
CA[G

+
EA

and G�
AF . Given this fact we can write the equation :

P (D�
AF jAi; D

+

BA; D
+

CA; D
+

EA) = P (D�
AF jAi) (1)

by using Bayes rule the belief in Ai can be written as

BEL(Ai) = ��F (Ai):
X
j;k;l

P (AijBj ; Ck; El):�A(Bj):�A(Ck):�A(El) (2)

This equation is computed using three types of information

� Causal support � (from the incoming links ).

� Diagnostic support � (from the outgoing links ).

� A �xed conditional probability matrix (which relates A with its immediate causes B,C
and E ).

It is the multi-dimensional �xed conditional probability matrix that forms the clustering of the
evidence (this being the prior knowledge in the model) according to the following rules.

P (Bfijs1j; s2k; s3l) =

8>>>>>>>><
>>>>>>>>:

0:75 if i = j = k = l
0:25=� if (i 6= j = k = l) ^ (0 < ji � jj � C)
1:0=� if : (j = k = l)

^(max(j; k; l) �min(j; k; l) � 2C)
^(min(j; k; l) � i � max(j; k; l)

0:0 otherwise

(3)

such that
P

j;k;l P (Bfijs1j; s2k; s3l) � 1 8i
where C = 1,
i,j,k,l range over the number of variables in Bf , s1, s2 and s3 respectively.
� and � represent the number of di�erent values of i satisfying the constraint.
A similar set of rules applying for P (BjBf;Bc).

These rules cluster the evidence along the assumption that if all the evidence is in agreement
then we would naturally have a higher con�dence in some event (a region existing) occurring
than if the evidence was in disagreement. Results of this segmentation are shown in �gure 6.



Markov Random Fields

Introduction.

This work is based upon an algorithm which uses a third order Hidden Markov Mesh Random
Field (HMMRF) for the segmentation of images, the algorithm was described initially by
Devijver [6], [7]. The main emphasis of this section is to illustrate two important uses of
the algorithm. Firstly, how the basic algorithm can be used to segment out objects from
background in infrared images as well as urban and non-urban regions from airborne images.
Secondly it will be illustrated how the algorithm can be enhanced in order to model textures,
the resulting `texture models' can then be fused together and used to segment images which
contain several Brodatz textures.

The fundamental idea behind this work is that given some image, we wish to segment it into
a number of homogenous regions. The grouping of the pixels in the image into these regions
is based upon local properties and neighbourhood relationships. It is these neighbourhood
relationships (that will be referred to as `contextual information') that are encoded into a set
of transitional probabilities in the Markov model.

The basic algorithm 3 has essentially two stages namely the labeling stage and the learning
stage. The former is concerned with the modeling of the image (the segmentation of the image
into homogeneous regions ie. the assignment of an optimum label to each image pixel) whilst
the latter is concerned with the parameter estimation problem (ie. taking the current optimum
labeling and using it to improve the model parameters). The algorithm processes an image pixel
by pixel in a raster manner and has the advantage in that the learning stage is unsupervised
and the only essential parameter required to be entered by the user is the number of states
that are required in the model.

De�nition of a 3rd order HMMRF.

Firstly, let the image be M �N in size and then XM ;N denotes a set of feature vectors Xm ;n .
In the simplest case these feature vectors will simply be the gray level intensity. Let �M ;N

denote a set of labels �m;n, where a label will de�ne the class to which a particular pixel of the
image belongs.

P (�m ;n=f�k ;l jk < m or l < ng) = P

 
�m ;n

,
�m�1 ;n�1 �m�1 ;n

�m ;n�1

!

for all points (m,n) such that 1 < m � M and 1 < n � N , with boundary conditions existing
along the �rst row and column.

The MMRF is said to be 3rd order due to the fact that �m;n has a dependency
4 upon its three

neighbouring labels, namely �m�1;n�1, �m�1;n and �m;n�1.

The model is assumed throughout to be spatially homogeneous, meaning that we can assume
that the transitional probabilities are totally independent from the position in the image. This
allows us to write Pq=rst as an abbreviation of P (�m;n= q=�m�1;n= r;�m�1;n�1= s;�m;n�1= t)

3limited space prevents a complete description of the mathematics of both the algorithm and its derivation,
for those interested refer to [6] and [7].

4In a second order MMRF the dependency of �m;n would exist with the two neighbours �m�1;n and �m;n�1.



where q; r; s and t are contained within the state-space of the model. This is read as the
probability of label q being chosen given the three neighbouring labels r, s and t.

The Algorithm.

In the initial stages of the algorithm a model is created by �tting a set of Gaussian distributions
(one per state, denoted by pq(X)) to the histogram of the image. The model also consists
of an initial set of transitional probabilities which are de�ned under the assumption that any
two neighbouring pixels in the image are more likely to have values close to each other than
at either end of the gray level spectrum.

The labeling stage is then a 2-dimensional set of recurrence relations described in [6] and [7]
which uses the information contained in pq(X) together with the set of transitional probabilities
Pq=r ;s ;t in order to cluster the image pixels into a set of homogenous regions.

The learning stage is based upon a class of techniques which are known as decision directed.
The decision directed re-estimation technique e�ectively transforms the updating formula into
a set of relatively simple counting formula, where I[:] is taken to be an indicator function5. The
learning stage can now be described as follows, the Pq=r ;s ;t is given by the following expression.

PM
m=2

PN
n=2I

"
~�m�1 ;n�1 = s ~�m�1 ;n = r
~�m ;n�1 = t ~�m ;n = q

#

PM
m=2

PN
n=2I

"
~�m�1 ;n�1 = s ~�m�1 ;n = r
~�m ;n�1 = t

#

with special cases existing for the �rst row and column. For instance the �rst column is de�ned
as

Pq=r =

PN
n=2 I[

~�n�1 ;1 = r ; ~�n ;1 = q ]PN
n=2 I[

~�n�1 ;1 = r ]

and similarly for Pq=t along the �rst row. The set of distributions pq are given by

pq(�i) =

P
m ;n jxm;n=�i I[

~�m ;n = q]P
m ;n I[~�m ;n = q ]

The above equations are performed for all combinations of q, r, s and t in the state space.
Essentially therefore it is simply examining every possible 2 � 2 neighbourhood throughout
the image and counting the number of occurrences of particular combinations (or patterns) of
labels. A resulting 4-state segmentation of an infrared image is shown in �gure 5, where the
three lower states (labels) have been merged into the background.

Segmentation of Urban Regions.

In this instance the images that we are dealing with are infra-red linescan images taken over the
Bedfordshire area at a height of 3000 feet. We wished to look at techniques for the automatic
location of features such as urban regions (also, but not mentioned here, the location of road
networks). Because of certain constraints such as being limited to single band 8-bit data the
approach taken is as follows. The image is preprocessed to obtain some statistical information

5If the expression within the brackets is true then the indicator function returns a 1 otherwise it returns a
0.



which can be used in an attempt to classify its content into urban/non-urban. It will be seen
that this statistical classi�cation is noisy and rather basic, the HMMRF algorithm is then used
to `tidy up' this classi�cation by segmenting it into homogeneous regions. A mesh of windows
is placed over the image, with each window being typically 16 � 16 pixels in size. For each
window a set of elementary statistics are computed.

� the number of signi�cant edges.

� the number of signi�cant extrema.

� comparison of the histogram using a chi-squared measure with a set of standard Gaus-
sians.

These are presented in order of their e�ectiveness and are coded into a single statistic per
window. Figure 6 shows an original image with an outline of the urban region indicated. The
results are interpreted as follows, for a simple 2-state model we have only urban or non-urban
regions, for any model with more than 2 states we have regions of high probability of being
urban through to regions of low probability of being urban. The result shown is for a 4-state
model with a single iteration, here only the region that has the highest probability of being
urban is illustrated6.

The window size can be reduced to give a �ner outline of the urban region and a number of
iterations can be used to allow the learning stage to improve the initial estimate. In practice
it has been found that although the window size can be reduced to 6�6 pixels the best results
do occur at around 16� 16. This is partly due to the fact that as the window size is reduced
the statistics being used become less reliable and in addition to this the number of learning
iterations required to remove errors in the classi�cation increases. One of our main objectives
is for a coarse level processing of an image in the shortest possible time.

Segmentation of Brodatz Textures.

For the segmentation of Brodatz textures [3] the basic idea is that if it is possible to derive
a model 7 which describes a texture then it should also be possible to fuse several of these
models together. We should then be able to segment a composite texture image using the new
composite model that has been obtained.

Combining Markov Models

The process of combining several models together itself makes use of a model which describes
the rules for the merge. Figure 7 illustrates this procedure for the merging of two 2-state models
into one 4-state model. The notation m3

i ;j denotes the probability of making a transition from
model i to model j. Whereas previously for a two state model the process could either remain
in the current state or make a transition into its neighbouring state, now however a transition
can also be made into either of the states that are in the second model.

Each texture is histogram equalised independently prior to the start of the process to remove
the possibility of detection due to �rst order statistics. The method has the property of rapid
convergence to a local maximum and for all of these tests the algorithm was run with a 2-state

6These regions could be considered as a set of contours .
7the use of the word derive in this sense means to train on a given texture using the learning stage of the

algorithm.



model for 10 learning iterations to obtain the set of model parameters pq , Pq , Pq=r , Pq=t and
Pq=r ;s ;t for each texture. Once these have been obtained the models will then be merged into
a composite model and this can be applied to a composite image of the two textures. The
transitional probabilities used in model 3 allowed for a 90% probability of staying in the current
texture model and a 10% probability of making a transition into another texture model.

Figures 8 shows a 4-state segmentation of a composite texture (2 states per texture), �rst with
the contextual information from the transitional probabilities Pq=r ;s ;t removed and then with
the contextual information included. (the results are displayed such that if a given pixel has
a label with a value corresponding to either of those in model 1 then it is displayed as black ,
otherwise it is displayed as white).
The segmentation without contextual information is basically the segmentation using knowl-
edge of the di�erences in the histograms of the two textures. Whilst the segmentation with
contextual information is where the Markov Model is used to resolve the ambiguities.

Discussion

The work illustrates that the basic algorithm proposed by Devijver can be used and readily
extended for a number of cases; �rstly, as a standard (contextual) segmentation tool used on
preprocessed data for the location of urban and non-urban regions in airborne images, secondly,
for the development and fusion of texture models which can then be used for the segmentation
of images composed of several textures.
The performance can be greatly improved through the use of parallel architectures. At present
the quality of the segmentation appears comparable with those from the standard sequential
case, but the approach will need to be examined in more detail with reference to this and also
other possible architectures and approaches for parallelism.
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from fine resolution image.
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