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VEHICLE DETECTION IN INFRARED LINESCAN IMAGERY USING BELIEF NETWORKS

P.G.Ducksbury, D.M.Booth, C.J.Radford

Defence Research Agency, Malvern, UK.

This paper describes a system for detecting vehicles
in airborne downward looking infrared linescan im-
agery, and in particular, the use of a Pearl-Bayes
Network (PBN) to combine disparate sources of ev-
idence. Here the primary source of evidence is a ve-
hicle detection algorithm with supporting evidence
being provided by vehicle track and shadow detec-
tors. The spatial arrangement of the vehicles also
provides useful contextual evidence since vehicles of-
ten move in convoy or are clustered into small groups
when encamped. This observation is the basis for
allowing neighbouring detections to re-enforce one
another and for incorporating a feedback loop with
which to increase the sensitivity of the vehicle detec-
tion algorithm within areas of suspected activity.

INTRODUCTION

A system is described for detecting vehicles in air-
borne downward looking infrared linescan imagery
as a precursor to analysis by a photographic inter-
preter. The imagery being studied consists of only
natural terrain, such as heathland, since urban areas
are in themselves sufficient to attract the attention of
an interpreter, and algorithms already exist for iden-
tifying such regions (2). The vehicles have a typical
resolution of around 10-15 pixels across.

This paper focuses on the use of a PBN to combine
sources of evidence which reinforce the classification
of a vehicle and in doing so examines the techniques
which generate the prior knowledge required by the
PBN. A detailed survey of related work is contained
within (3), in particular, we exploit an IED project
concerned with the identification of urban and drive-
able regions in various types of imagery (2).

The primary source of evidence is a vehicle detec-
tion algorithm which extracts potential targets by
filtering, and then assigns each of them a probabil-
ity based on the ‘vehicleness’ of their shape and grey
level distribution etc. Supporting evidence is pro-
vided by vehicle track and shadow detectors. The
spatial arrangement of the vehicles also provides use-
ful evidence, since vehicles often move together or
are clustered into small groups. This latter feature is
important because it suggests that detections could
re-enforce one another, and potentially, that a num-
ber of the marginally missed detections could be cor-
rected. Spatial relationships are also exploited by al-
lowing a combined belief in the support of a vehicle

to feed back to the detectors and influence their sen-
sitivity within the local neighbourhood.

VEHICLE - FEATURE DETECTION

The vehicle detector (1) consists of 5 stages : pre-
processing; vehicle detection; segmentation; feature
extraction and classification.

Preprocessing incorporates scanline noise removal
and a rectilinearisation procedure for correcting
across heading sec-squared geometrical distortion
that is intrinsic to the scanning mechanism.
Vehicle detection is achieved using two filters : a
matched filter which detects localised bright regions
that contrast greatly with their surroundings; and
a difference of two medians filter (also known as a
co-median filter) which emphasises small objects by
subtracting large scale background structure. Ve-
hicle candidates are segmented by thresholding the
co-median filter output on the basis of local vari-
ance statistics. In the default mode of operation the
matched filter acts as an enabler to the co-median
filter. Thus the desirable properties of both filters
are utilised, most notably, the matched filter’s ro-
bustness to false alarms, and the retention of shape
information by the co-median filter.

Four types of feature are extracted from the local
neighbourhood of a potential vehicle : shape; ob-
ject grey level distribution; texture and object to
background contrast. Classification as vehicle or as
background clutter is achieved by a Fisher linear dis-
criminant (4).

EVIDENCE ACCUMULATION

The sources of supporting evidence are : shadows;
tracks; and the spatial relationships that exist be-
tween potential vehicles.

Vehicle Shadow Detection

Vehicle shadows exhibit a characteristic wedge shape
and grey level distribution which can be recognised
by a detection-classification strategy similar to that
used for the detection of vehicles.

Most notably, the choice of feature set was heav-
ily constrained by the limited availability of train-
ing samples and a requirement to keep inputs to the
PBN as independent as possible.



Vehicle Track Detection

Vehicle tracks are detected by the application of a
Marr-Hildreth filter, followed by non-maximal sup-
pression, hysteresis thresholding (to remove small
relatively unconnected line segments), line filtering
(to remove small jagged spurs connected to main line
segments), and finally, parallel sets of lines are iden-
tified by a matching process based on the Hough
Transform. To ensure that tracks are detected for a
range of different vehicles and ground conditions, the
line detection process is performed at several spatial
resolutions with the results being combined using a

logical OR.
Vehicle Group Detection

The orientation of each vehicle detected by the clas-
sifier is computed and a binormal distribution fitted
to all neighbouring vehicles of similar orientation.
The result is a set of interleaving binormal distribu-
tions. More specifically, the process is achieved by
examining a small patch of the image around a vehi-
cle. A gradient image is computed for this patch and
the angle is obtained from arctan of the ratio of the
x and y components at each edge point. These an-
gles are then accumulated into a histogram covering
all 360 degrees. We utilise reflection to consider just
4 main compass points (0, 45, 90 and 135 degrees).
The resulting angles are a good representation of a
vehicles orientation.

Once similarly orientated vehicles have been iden-
tified, clustering is applied using the Median and
Median Absolute Deviation (normalised to an ideal
model, Huber (5)) to fit one or more binormal dis-
tributions to each orientation cluster . The distribu-
tions being rotated to align with the cluster itself.
The angle being obtained by a simple linear regres-
sion (y = az + b) on the coordinate points of the
vehicles in relation to the principal axis of the clus-
ter.

Evidence Combination - Theoretical

Bayesian networks are directed acyclic graphs, such
that a graph G is a pair of sets (V,A) for which V is
non-empty. The elements of V are vertices (nodes)
and the elements of A are pairs (x,y) called arcs
(links) with z € V and y € V.

In our network (Figure 3) node A has several prede-
cessors, and consequently the belief generation and
propagation equations are more complex than might
be expected. The equations are derived along similar
lines to those of Pearl in (6).

If we just consider the link from nodes B to A then
graph G consists of two subgraphs G+BA and Gg,
which contain the datasets D;A and Dy, respec-
tively.

Belief equations

From Figure 3 we can see that node A separates the
two subgraphs GJE“;A U GéA U GEA and G, z. Given
this fact we can write the equation :

P(DZF|A“D§A7D$A7DEA) = P(DZF|A¢) (1)

by using Bayes rule the belief in A; is given by
BEL(A;) = P(Ai|D} 4, DG 4, Dipa- Dap)
= CYP(A1|D1—§A7DgAwDEA)-P(DZHAi)
= aP(D;p|4:). Y [ P(Ai|B;.Cy. Ey).
7okl
P(BJ'|D1+3A)-P(CL~|D$A):P(E1|D}+EA)] (2)

where « is taken to be a normalizing constant.
It can be seen that equation 2 is computed using
three types of information

e Causal support m (incoming links ).
e Diagnostic support A (outgoing links ).

e Fixed conditional probability matrix (relates A
with its immediate causes B,C and E ).

The equations which form the above information are
given as follows. Firstly the causal support equa-
tions :

7rA(BJ') = P(leDJBrA) (3)
7a(Cr) = P(Cy|DE L) (4)
Ta(Ep) = P(Ei|Dy,) (5)

Secondly the diagnostic support equation is given by

Ap(Ai) = P(D 4 p|As) (6)

Finally the conditional probability matrix is defined
to be P(A|B,C, E).

Equation 2 can now be rewritten in order to obtain
the belief at node A.

BEL(A;) = aAp(A;). Y P(Ai|B;,Cy. E).
3kl
ma(B;).ma(Cr).ma(Er)  (7)

The belief at nodes B,C and E can be obtained from
the equations

BEL(B]) = (M.TFA(B]')./\A(B]') (8)
BEL(Cy) = a.wa(Cy).Aa(Ck) (9)
BEL(E;) = a.wa(E;). A a(E)) (10)

Propagation equations

These are derived firstly for the diagnostic case.
From an analogy with equation 6 we can write



Aa(Bi) = P(Dg,|Bi) (11)

by partitioning the D, into its component parts,
namely A, D, DgA, DEA we can obtain

—QZ[ wa(C
E (Al

l

).ma(Ey).

P(Ai|Bi, Cj, Ey) | (12)

likewise for A4 (C;) and A4 (E})

—O’Z[WA

Z Ar(A)).P(A)|By,Cy, Ey) | (13)
l

).wa(Ey).

and

Aa(Ey) = az [ 7a(B;).ma(Cy).
Z Ap A,

Similarly for the causal case, an analogy with equa-
tion 3 allows us to write
mr(Ai) = P(Ai|D§A1DéA‘D};A) (15)
and then to derive the equation
mr(Ai) = a Y [ P(Ai|B;,Cy. E).
75k,
WA(Bj).FA(Ck).WA(El)] (].6)

(A|B;,C;, Er) | (14)

Note that equations 12 - 14 and equation 16 demon-
strate that the parameters A and 7 are orthogonal to
each other ie. perturbation of one will not affect the
other. Hence evidence propagates through a network
and there is therefore no reflection at boundaries.

Evidence Combination - Applied

As was described earlier, a Pearl-Bayes Network is a
Bayesian approach to reasoning (6). In this applica-
tion the fusion of evidence is achieved using the rela-
tively simple tree structured network, shown in Fig-
ure 1, the actual PBN being contained in the large
dashed box. The input level in the lower half of the
diagram contains the supporting evidence, i.e. that
which relates to vehicle shadows, tracks and group-
ings, this being combined at the next level to formn
a single measure of belief in all the supporting evi-
dence. This is then combined at the next level with
evidence supplied by the vehicle detector itself to
give an overall belief in the existence of a vehicle
given all the available knowledge.

Concerning the fusion process : concurring evidence
should not generate a high belief if it is not sup-
portive of a vehicle; a vehicle lacking supporting ev-
idence should not imply that a vehicle does not ex-
ist, and similarly, strong supporting evidence on its
own must not be allowed to infer the existence of a

vehicle. However, the latter has been exploited in
a feedback loop to the vehicle detector, as although
the detector has proved reasonably robust, the initial
filtering process occasionally fails to highlight po-
tential vehicles. The feedback loop indicates regions
most likely to contain vehicles. In view of the pos-
sible pay-off, the filtering procedure then boosts its
sensitivity at the expense of increased false alarms.
One of the difficulties that has prevented people from
using the Pearl-Bayes Network approach is the con-
struction of the prior (knowledge) probabilities that
relate the input evidence to the output belief. One
solution is to treat the evidence essentially as a clus-
tering problem and this has proved successful in the
past (2), currently it is based on using the statisti-
cal median and median absolute deviation as basic
measures when assigning these probabilities.

The probabilities for combining all of the available
evidence form a 4-dimensional set comprising three
inputs and one output. The median and Median
Absolute Deviation (MAD) normalised to an ideal
model are used as measures. Firstly the medians
and MAD’s are computed from the labels and ta-
ble 2 is used to obtain the probabilities which are
then scaled to (0,1). The resulting set of probabil-
ities are then converted into a multivariate set of 5
labels according to the following rule.

(0.1,0.1,0.1,0.1,0.6) if P> .8
(0.1,0.1,0.1.0.6,0.1) if P > .6
(0.1,0.1,0.6.0.1,0.1) if P> .4
(0.1,0.6,0.1,0.1,0.1) if P> .2
(0.6,0.1,0.1,0.1,0.1) otherwise

such that 37, P(glrs:)=1V r.s,t and g = 0,...4.

P(q|r,s,t) =

Combining evidence with target prior

The label set of 5 labels is denoted as low (L), lower
medium (LM), medium (M), upper medium (UM)
and high (H). We generally try to ensure that the
output belief corresponds to the input unless the
evidence strongly suggests otherwise. The proba-
bilities are a 3-dimensional set that can be inter-
preted using Table 1. Evidence is shown on the
vertical axis and target probability on the horizon-
tal. Since the probabilities are 3-dimensional each
entry in Table 1 has an associated vector ranging
from L = (0.6,0.1,0.1,0.1,0.1) through to H =
(0.1,0.1,0.1,0.1,0.6). The following condition must
appl}(; 0114the probabilities Zq P(4lrs) =1V rs and
q=0...4.

RESULTS

Over the terrain being considered, vehicle detection
and classification have been reasonably successful.
As expected, evidential reasoning does not have a
major effect when the vehicle classification results
are reliable (and certain) but can come into its own



when the classifier decisions are more marginal. In
such cases, the vehicle classifications have been re-
inforced by the supporting evidence.

Figure 2 shows typical input imagery; note the
wedge shaped shadows and the presence of tracks.
The vehicle under highlight is comparatively weak
and as a consequence was missed by the first pass
of the vehicle detection filter. In this case, evidence
of neighbouring vehicles was fed back to the detec-
tor, its local sensitivity increased, and the vehicle
located. On a small set of 9 images containing a
total of 79 vehicles, 67 vehicles ( 85% ) and 4 false
alarms were detected initially. After implementation
of the PBN and the feedback loop, vehicle detection
had increased to 75 vehicles ( 95% ) with 12 false
alarms.

Most of the missed detections resulted, at least in
part, from vehicles being either unusually small or
partially obscured by vegetation. One miss was
caused by a vehicle being adjacent to a transition
in background texture and an inability of the detec-
tion algorithm to adapt accordingly.

The increased false alarm rate is high in comparison
with the previous level but not regarded as a serious
problem as it is likely that vehicles have already been
detected in the same areas and, therefore, the addi-
tional overhead to a photographic interpreter is not
significant. In any case, the feedback loop could be
configured to particular operational requirements.

DISCUSSION

An evidential reasoning approach such as a Pearl-
Bayes Network offers a flexible framework into which
alternative or more reliable sources of evidence could
be incorporated should the need arise. Even so, it
appears that more comprehensive systems will be
required (i.e. making the transition from image pro-
cessing to image understanding) if it were seen desir-
able to extend this work into a more general image
interpretation system. This and previous work has
shown that we can successfully detect vehicles, ur-
ban regions, road networks etc, what is now required
is bringing all these components together into a more
general based image understanding system.
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Target Probability
L | LM | M | UM | H
Evidence| L L LM M|UM | H
IM||LM|LM M| UM | H
M M M M|{UM|H
UM || H H | H| H | H
H H H | H| H|H

Table 1: Target/Evidence Contextual knowledge.

| Prob | Condition | Explanation

0.8 | m>z/2AM < =xz/4 | Supporting, close
0.6 | m>xz/2AM > z/4 | Supporting but
not close

04 | m<z/2AM < z/4 | Not Supporting, close
0.1 | m<z/2AM > z/4 | Not Supporting and
not close

where m = median of (s.t,u),
M = Median Absolute Deviation of (s,t,u),
x = range of labels,
s = Shadow prior label,
t = Track prior label,
u = Group prior label

Table 2: Rules for contextual knowledge.
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Figure 1: Vehicle Detection Belief Network.

Figure 2: Ezample of vehicle reinforcement. Figure 3: PBN - belief computation.



