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Abstract

This paper describes a parallel implementation of a texture seg-
mentation algorithm. The algorithm uses a Pearl Bayes Network
(PBN) to combine evidence for the location of urban regions in air-
borne infra-red linescan images and for the location of driveable re-
gions in autonomous land vehicle imagery. A multilevel PBN ap-
proach is introduced and followed by an example which is used to
illustrate the derivation of the propagation and fusion equations. The
parallel implementation is then described with results demonstrating
its e�ectiveness.

1 Introduction

The vast majority of papers in the literature which deal with the fusion of knowl-
edge for applications in evidential reasoning have concentrated on the theoretical
aspects. The papers have dealt with the structure of the networks themselves
and how they can be used to represent and manipulate knowledge. The Bayesian
approach for reasoning is described in a series of papers by Pearl in particular [4]
where he describes the basics of Bayesian networks and belief functions. There are
a number papers which are now beginning to address the problems of using evi-
dential reasoning in the area of image understanding. Some of these are reviewed
in [2] and this paper describes one such practical application.

2 The Problem

The problem is generically de�ned as the location of some region in an image.
This problem will be approached by taking several statistical measures from small
patches of an image these are treated as a set of judgements (virtual evidence in
Pearl's notation) about the content of the patches. This evidence is then combined
into a belief of the patch belonging to the de�ned region.

Ideally we would like to be able to improve the estimate (or belief) and in
someway this can be achieved by using information from a higher level. An ex-
ample of this being given in �gure 1 which shows one way in which a multilevel
approach can be applied. The lowest level in the pyramid contains the raw pixels
at full image resolution, whilst the following level contains the raw pixels at half



resolution. The next two levels contain statistics computed from the image data.
At the top level is the overall belief in a region.

S1-S3 : Edges, Extrema, Distribution type
from fine resolution image.

S4-S6 : Edges, Extrema, Distribution type
from coarse resolution image.

B f : Belief from fine resolution.

B c : Belief from coarse resolution.

B : Belief
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Figure 1: Multi-level Pyramid.

In the next section we will concentrate on the simpler case of just a single
level in the network as shown in more detail in �gure 2. It will be shown how the
equations for the belief and propagation of information in a PBN can be derived
for a given example.

3 Network and equation construction

De�nition 3.1 Bayesian networks are directed acyclic graphs, such that a graph
G is a pair of sets (V,A) for which V is non-empty. The elements of V are vertices
(nodes) and the elements of A are pairs (x,y) called arcs (links) with x 2 V and
y 2 V .

Considering the comparatively simple network shown in �gure 2 the equations
for computing the belief and propagation of information are slightly more compli-
cated than they would at �rst appear. In the simplest case of a causal tree a given
node would have just one predecessor, in our network the node A has several pre-
decessors. The equations are derived along similar lines to those derived by Pearl
in [4], where in his example node A has just two predecessors and two successors.
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Figure 2: Pearl Bayes Network : Nodes B, C and E will represent di�erent statis-
tical information, Whilst node A represents our belief in an Urban patch.

If we consider the link from node B to A then the graph G consists of the two
subgraphs G+

BA and G�BA. These two subgraphs contain the datasets D+

BA and
D�BA respectively.

3.1 Belief equations

From �gure 2 we can see that node A separates the two subgraphs G+

BA [G+

CA [
G+

EA and G�AF . Given this fact we can write the equation :
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by using Bayes rule the belief in Ai can be written as
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where � is taken to be a normalizing constant. It can be seen that equation 2 is
computed using three types of information



� Causal support � (from the incoming links ).

� Diagnostic support � (from the outgoing links ).

� A �xed conditional probability matrix (which relates A with its immediate
causes B,C and E ).

The equations which form the above information are given as follows. Firstly
the causal support equations :

�A(Bj) = P (BjjD
+

BA) (3)

�A(Ck) = P (CkjD
+

CA) (4)

�A(El) = P (EljD
+

EA) (5)

Secondly the diagnostic support equation is given by

�F (Ai) = P (D�AF jAi) (6)

Finally the conditional probability matrix is de�ned to be

P (AjB;C;E) (7)

Equation 2 can now be rewritten in order to obtain the belief at node A.

BEL(Ai) = ��F (Ai):
X
j;k;l

P (AijBj ; Ck; El):�A(Bj):�A(Ck):�A(El) (8)

The belief at nodes B,C and E can be obtained from the equations

BEL(Bj) = �:�A(Bj):�A(Bj) (9)

BEL(Ck) = �:�A(Ck):�A(Ck) (10)

BEL(El) = �:�A(El):�A(El) (11)

3.2 Propogation equations

The propagation equations for the network are derived as follows, �rstly the diag-
nostic ones. From an analogy with equation 6 we can write

�A(Bi) = P (D�BAjBi) (12)

by partitioning the D�BA into its component parts, namely A, D�AF , D
+

CA, D
+

EA

we can obtain

�A(Bi) = �
X
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X
l
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�

(13)



likewise for �A(Cj) and �A(Ek)
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X
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�
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and
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�

(15)

The Causal equations are de�ned as follows. From an analogy with equation 3 we
can write

�F (Ai) = P (AijD
+

BA;D
+

CA;D
+

EA) (16)

and then derive the equation

�F (Ai) = �

� X
j;k;l

P (AijBj ; Ck; El):�A(Bj):�A(Ck):�A(El)
�

(17)

An important point to realise is the fact that equations 13 - 15 and equa-
tion 17 demonstrate that the parameters � and � are orthogonal to each other ie.
perturbation of one will not a�ect the other. Hence evidence propagates through
a network and there is therefore no re
ection at boundaries.

4 Implementation

The technique is demonstrated for two di�erent sets of imagery, �rstly the segmen-
tation of urban from non-urban regions in infra-red linescan images and secondly,
the detection of driveable regions in a sequence of forward looking images from a
moving vehicle. For both sets the technique is as follows :-

A Mesh is placed over an image and for each of the resulting windows a set of
statistics (which provide strong texture discrimination) are computed. The statis-
tics are the number of edges, the number of extrema and gray level distribution
type. These statistics are quantized down into a smaller number of levels. The
number of edges and extrema are both reduced to 5 levels, whilst the distribution
type remains with its 4 possibilities.

The statistics are then used to produce a set of judgements, for example an
expert might upon looking at a particular window issue a report of the form
(0:0; 0:7; 0:9; 0:6; 0:0). This means that he believes there is a 70% chance that level
2 describes the number of edges, 90% chance that its level 3 and 60% for level 4.
But he believes there to be no chance of it being levels 1 or 5.

For the Belief at nodes Bf , Bc and B in �gure 1 it was decided to have 3
variables which denote the possible values that the region can have, namely (low,
medium, high).

The �xed conditional probability matrices (eg P (Bf js1; s2; s3) etc) which are
the prior information and relate the given node with its causal information are



created along similar lines to that used in [2] and which originally came from
[1]. They are based upon the assumption that the probability of an event at a
given node should be greater if its causal information is tightly clustered together
than it should be if the causal information is further apart. For the P (BjBf;Bc)
matrix (which relates the beliefs from the �ne and coarse resolutions) slightly more
emphasis is given to the causal information received from the coarse resolution
belief.
P (Bfijs1j ; s2k; s3l) is described formally as

P (Bfijs1j ; s2k; s3l) =

8>>>>>><
>>>>>>:

0:75 if i = j = k = l
0:25=� if (i 6= j = k = l) ^ (0 < ji � jj � C)
1:0=� if : (j = k = l)

^(max(j; k; l)�min(j; k; l) � 2C)
^(min(j; k; l) � i � max(j; k; l)

0:0 otherwise

(18)

such that
P

j;k;l P (Bfijs1j ; s2k; s3l) � 1 8i
where

C = 1,
i,j,k,l range over the number of variables in Bf , s1, s2 and s3 respectively.
� and � represent the number of di�erent values of i satisfying the constraint.

P (BjBf;Bc) is de�ned as

P (BijBfjBck) =

8>>>>>><
>>>>>>:

0:9 if i = j = k
0:7 if (i = j) ^ (ji� kj � 1)
0:3 if (i = k)^ (ji � jj � 1)
0:6 if (i = j) ^ (ji� kj > 1)
0:1 if (i = k)^ (ji � jj > 1)
0:0 otherwise

(19)

such that
P

j;k P (BijBfjBck) � 1 8i
where

i,j,k range over the number of variables in B, Bf and Bc respectively.
If the application remains of a broadly similar nature (ie classifying (or clus-

tering ) regions) then the only change necessary would perhaps be a new set of
statistics which more accurately describe the detail required in the image. In ad-
dition to this if the number of input nodes alters then the prior knowledge in the
�xed conditional probability matrix will need to change, however the set of basic
equations given above can be used to automatically generate this information.

5 Parallel Processing

5.1 Architecture

The architecture used for this work is based upon a transputer array and is called
CHIP (Conceptual Hierarchical Image Processor). It is a real-time image pro-
cessing system which is intended to be used as a test-bed for developing new
algorithms, and prototyping of new image processing architectures.



To avoid a communication bottleneck video data is communicated throughout
using two digital video busses. CHIP provides for video input to an acquisi-
tion/display board which is connected to a video crossbar switch, this in turn is
connected to the main processing unit of CHIP. Various DSP devices can be 
ex-
ibly interconnected by the video crossbar for the pre-processing of images. The
result can then be passed to all processors in the transputer array.

The processing array currently consists of 20 modules each being a T805 trans-
puter with 4MByte of DRAM and 2MByte of VRAM. The latter forming two banks
of 4 (512 � 512) framestores. Two video input and output busses are common to
each module, each bank of framestores being connected to one of the input and
one of the output busses. The individual transputer links of each module are con-
nected to a link crossbar switch allowing for di�erent network topologies. Details
of the high level system design for CHIP can be found in [5].

5.2 Algorithm

In considering the implementation there are probably a number of ways in which
the algorithm could actually be parallelised. Given below are just a few options
that where considered for exploiting the parallelism.

1. Topological con�guration of CHIP to match the Multilevel PBN tree struc-
ture.

2. Algorithmic Parallelism. Using multiple pipelines in which the �rst pro-
cessor in each computes the statistical evidence, whilst the next processor
computes the pbn belief.

3. Geometric Parallelism. Each processor handles a small section of the data
space and performs all the computation of the algorithm.

The geometric approach was the one chosen as the most suitable it consists
basically of a complete copy of the algorithm (statistics and PBN) on each slave
processor with one processor allocated as a master controller, this corresponds
to a processor farm approach. This approach was chosen as all stages of the
algorithm are totally deterministic and since once the information regarding the
PBN tree structure and probabilities has been communicated to each processor
and the tree built no further communication between processors is required. This
eliminates the need for any (possibly) expensive communications and opens the
way for expectation of signi�cant speedups as the number of processors is increased.

The physical processors are arranged in a bidirectional pipeline as shown in
�gure 3. Currently the master reads an image �le from the host computers disc
and sends it to the acquisition and display (ACQDISP) controller which sets up
the the framestore control registers to display the image and then sends it to
each slave processor via the video crossbar switch. The controller then sets up a
map specifying which processors are responsible for which windows of the image.
This together with the control registers enable the results of each processor to be
displayed directly the moment they become available. The bidirectionality of the
pipeline is used simply to allow results to be sent back across channels to be saved
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Figure 3: Hardware Process Structure.

to a �le. These results are also used by the master process to send instructions to
the `Main' process which is used to produce overlays and graphics on the display.

The load balancing is performed by the master process which works out how
many windows there are to be processed, the image being treated as a 1-dimensional
set of windows numbered consecutively with the top left being 1. Since the master
knows how many slave processes there are in the con�guration it can work out the
number of windows per processor. Both of these numbers are sent out to the �rst
slave in the pipeline which receives them and subtracts the windows per processor
from the total. This slave then sends out to the next slave the number of remaining
windows and the number of windows per processor. This process continues until
the slave at the end of the pipeline receives the message and handles whatever
number of windows are remaining.

6 Results and Conclusions

The results for locating urban regions are given for the image shown in �gure 4.
An example of the statistics for this image are given in �gure 5 using a window
size of 16 � 16 pixels. These statistics are converted into a set of judgements as
described in the previous section and then presented as evidence to the PBN. The
result for the Multi-level PBN is shown in �gure 6. This was produced by drawing
an outline of the belief variable which corresponds to the area of highest belief in
urban and overlaying onto the original image.

Figure 7 shows the result of the multi-level PBN on a driveable region image
using the same three input nodes at each level, representing extrema, edges and
distribution type respectively. The white patches represent the centre of windows
that have been classi�ed as driveable.



For the both cases the time required with 20 � T805 transputers was 0.95
seconds given a 500�500 image. These times are the computational time required
to compute all the statistical measures and run the multi level PBN for all windows.

It has been demonstrated that the approach gives good results on two di�erent
classes of application imagery and that once initialisation has been performed the
algorithm is ideally suitable for asynchronous parallel implementation for which a
linear speedup obtainable. Realistically the degree of parallelism is only limited by
the number of processors that are available, each of the windows could theoretically
have been computed in parallel. This approach compares extremely favourably
with a previous one described in [3] which used a Hidden Markov Mesh Random
Field for the texture region segmentation of the statistical data, and was not as
suitable for a parallel implementation.

The approach has been tested on a variety of images at several di�erent al-
titudes with considerable success. The approach also performs well for the alv
imagery and has been used with a live video as the input with the algorithm
grabbing input frames as fast as it can. It may in future be possible to perform
some of the initialisation and statistical computations in hardware. It is estimated
that with some of the initialisation performed in hardware and an array of T9000
transputers the driveable region version should be able to perform at the rate of
at least 12-15 frames per second.
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Figure 4: Raw Image, 3000 ft.

Figure 5: Statistics : Top Left - Edges,
Top right - Extrema, Bottom - Distri-
bution type.
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Figure 7: Driveable region
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