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A New Three-Term Conjugate Gradient Method

L. C. W. DIXON,' P. G. DUCKSBURY,” AND P. SINGH?

Abstract. Inthis paper, we describe an implementation and give perfor-
mance results for a conjugate gradient algorithm for unconstrained
optimization. The algorithm is based upon the Nazareth three-term
formula and incorporates Allwright preconditioning matrices and restart
tests. The performance results for this combination compare favorably
with existing codes.
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1. Introduction

The conjugate gradient approach was introduced as an algorithm for
solving large systems of nonlinear equations by Hestenes and Stiefel (Ref.
1) and adapted for nonlinear optimization by Fletcher and Reeves (Ref.
2). For large-dimensional problems, it has the advantage over both modified
Newton and variable metric methods of not requiring a matrix store and
is therefore usually used for large-dimensional problems.

In this paper, we will first review the properties of conjugate gradient
algorithms on large-dimensional problems and discuss the recent develop-
ments that have been suggested for improving the performance of such
algorithms. We will then propose a new algorithm that includes these
modifications and present numerical results obtained with the new
algorithm, which indicate that it performs better than a selection of other
algorithms on a number of test functions.
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2. Preliminaries

2.1. On Quadratic Functions

Definition 2.1. A set of directions "' ;= L...,k k=n, is said to be
conjugate with Tespect to a matrix G and the associated quadratic functiop
f=a+ix"Gx (1)

if they possess the property
GV =0,  juj

()
If we have a set of n independent conjugate directions, these form a
base, and we May express any point x as a linear combination,

*=2 B 3)

Y ————

So, if x* represents the minimum point,
S =f(x*) =33 5 BB ITG BIBF VTG, )
it i
anfi, using Eq. (2),
) =) =T (B3- g1 Gy )

Theorem 2.1. Quadratic Termination. 1If we minimize f(x) by search-
ing along each conjugate direction in turn, then each search is independent
of the other, and we must set 8, = BF. The minimum of a quadratic function
is therefore obtained after searching along n mutually conjugate directions.

This is, of course, the basis of the conjugate gradient approach; but,
if this were its only property, the method would be hopelessly inefficient
on most large problems.

In conjugate gradient algorithms, the Séquence of directions 1* and
4 sequence of points x* are generated iteratively,

XD 5 g g gthr (6)

where the step « is chosen so that, if the function is the quadratic (1), then
x(k+1) = - z

then the minimum of the quadratic function in the space spanned by
EAS O and, if the initial direction ") =g'" and the classic iterative .
method for generating 1% g used, this space is the same as that spanned
by [g‘V, Gg™" ..., G ] Erom this, two well-knawn theorems have
been derived which account for the practical us
large systems.

s p—— ———
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Theorem 2.2.  The number of iterations to obtain the minimum of (1)
is bounded above by the number of independent vectors in the set
s G s, G,

Theorem 2.3. The number of iterations to obtain the minimum of (1)
is bounded above by the number of distinct eigenvalues of G.

2.2. On Nonquadratic Functions. When the function to be optimized
is nonquadratic, the above framework can still be used to generate an
efficient algorithm. Many codes have been written for this purpose, begin-
ning with that described in Fletcher and Reeves (Ref. 2). In proposing a
new conjugate gradient algorithm, we wished to ensure that its convergence
pattern is based on Theorems 2.2 and 2.3 and not Theorem 2.1 above.

The structure of an early algorithm based on Theorem 2.1 consisted
of seven basic steps.

Algorithm 2.1

Step 1. Select x'V, €, j.... Set k= 1, j =1 Calculate f'"" and g'V.
Step2. If ||g''|| < €, stop. If j= ... stop. If || x*'— x*~"|| < ¢, stop.
Step 3. If k=1, set p*=—g®. otherwise, set p=—g® 4 ppt—n)
Step 4. Perform an almost perfect line search along p®.

Step 5. Calculate g™, b and set j=j+1, k=k+1.

Step 6. 1f k=n, set k= 1, to start a new cycle.

Step 7. Go to Step 2.

In the above algorithm, Step 3 generates the set of conjugate directions
on (1), provided the line search undertaken in Step 4 is perfect. Insofar as
conjugacy is only defined for quadratic functions, the line search in Step 4
ought to contain a parabolic interpolation to guarantee that it is exact on
quadratc functions.

To obtain a downhill direction, we need p™*'"g™*' <0 where

ki k k k (k—1)T_(k

P( Tg():_gt JTg( }+bp 1 g( )_

The last term is, of course, zero for a perfect line search, but otherwise this
condition implies that the search must be sufficiently accurate for
(k=TT _ (k)

P gt e BT R g, (7)

which imposes one limit on the accuracy needed in the line search.

. —
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Ihe form of b, obtained immediately in Step 3 by insisting that P s
: tk-1)

gate to p , namezly,
(k)T (k—1) X
g ¥ : (k=1 (k) (k—1)
b:p(k—nrrlkﬂn where y = A ’ (3)

can be simplified using 1he conjugacy and orthogonality properties, and

alternative formulas are often used.
By the definition of + =",

T (h-
_ &

(g{i\‘}_g ] : (9)
(g(k)_grm[))'

Using the perfect line sezrch condition twice then gives the Polak-Ribiére
formula (Ref. 3)

(k)T

b_p(kml)‘r

(k=1

gl (g —g™

g g

and, applying the orthogonality property, then gives the Fletcher-Reeves

formula
b _ g(kJTg(k) {11)
g(k-—l)Tg{k—l )

Although both formulas are based on the assumption of a perfect line
search, they are frequen:ly used in conjunction with imperfect searches.
There is little conclusive numerical evidence on which of the alternative
formulas for b is preferzble; but, in Ref. 4, Powell argues in favor of the
Polak-Ribiére form (1(1. He shows that, if the conjugacy property

(RYT (k=1) _

g'g =0 has alreac: been lost, then the Polak-Ribiére form bounds

the angle between p*) z12d g*' and can produce a much more downhill
direction.

Finite termination o7 the above tvpe of algorithm follows from Wolfe’s

theorem (Refs. 5 and 6. provided the line search in Step 4 is such that

Conditions IT and III a7 satisfed. Condition I is automatically satisfied

on the regular subset of directions with k=1, as the search is then along
the steepest descent direction.

Cohen (Ref. 7) firs proved that the above class of algorithms is
superlinearly convergent :nd Dixon (Ref. 8) gave one proof that there is a
region around the solutioz in which it has n step second-order convergence. |
Most recent research work on the conjugate gradient algorithm has concen-
trated in four areas: (i) 12e avordance of the implied perfect line search at

Step 4; (ii) the avoidancs of the steepest descent step at the beginning of
each cycle at Step 3: (iii the introduction of an improved resetting test at

(k=1D)T k-1, : (10)

e st e ——— — s &
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ep 6, so that the cvcls meed not contain the full n iterations: and (iv
p o, 3

preconditioning the objective function to obtain a better eigenstructure and
hence improved performance.

3. Inexact Line Searches

The proof of finite termination of the conjugate gradient algorithm
only requires that the line search at Step 4 satisfies Conditions II and III
of Wolfe's theorem when k=1. If. however, the direction of search is not
reset regularly to the steepest-descent direction, then, to retain finite termina-
tion, it is necessary to test the direction of search against Wolfe’s Condition
[ regularly; in the implementations discussed, this is done at every iteration,
and also Conditions II and III are satisfied at each iteration.

The n-step second-order convergeénce property can be retained if 3
parabolic or cubic interpolation is included in the line search and the

accuracy steadily improved so that ¢, the angle between g*! and i
satisfies
leos vl < R||g, (12)

where g'" is the gradient at the start of the cycle.

As this is still a stringent condition to achieve as gl -0, methods
were sought for retaining n-step second-order convergence for more relaxed
line searches. In the earliest of these. the gradient prediction method (Dixon,
Ref. 9), this rate was achieved by the introduction of two additional vectors,
thus not greatly increasing the storage requirement. The basis of the method
Wwas to generate the same set of conjugate directions that would have resulted
from the use of perfect line searches and to store a correction vector.

Suppose that a step d'*’ is taken along the direction P to a new point
x“*D_ where the new gradient is g'*"", but that, if a perfect step had been
taken, the step would have been 4'*". Then, from the properties of a quadratic
function, it can be shown that the following ratios are equal:

“&’(k)“ p‘leg(k) plk}Tg(k)
O =~y = BT, o _ k=1, _FIT.(h) (13)
@™ pOT (g —gthr ™ piiTy,

This enables us to predict both the point that would have been reached
with a perfect line search and the gradient at that point. Also, due to the
conjugacy of the directions generaizd, these corrections are independent,
and we can define x“*'"* and g*~**_the point and gradient that would
have been reached after k perfect line searches, as

(k=1)% _ _(k+1)
_g -

w(-.—I), IuAll*:x(kq‘-l)_z{kﬂ)’ (14&)

g
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where
W =W (e (), g, (1)
=2 e-@®), o, )
P

The prediction g* is then used in the conjugate gradient zlgorithm to
calculate p, with v* 7" in the formula for b being replaced by g * *— g%
On a quadratic function, if g% =0, this indicates that, with perfect line
searches. x'** would be the solution and that a step - is necessary to obtain
the solution. On a nonquadratic function, it seems logical to include a line
search along z if such a situation arises.

An alternative method for generating conjugate directions without
performing accurate line searches was given by Nazareth (Ref. 10), namely,

1

PUOT (k) PO Tk=1)
k=1 _ (k) ] (k) (k—1)_
f =Tyt lk)i—y(k)t +I(k—-1]Ty(k—1)f ; (15)

in this form, the new direction 1“*? does not depend (apart from a scalar
multiplier) on the length of the step along t“). The same set of conjugate
directions is therefore generated for arbitrary step sizes, and the correction
step z can be calculated as before. Again, two additional vecior stores are
needed, 1“7V and :, and again the value of g can be introduced to
indicate when the step z would predict the solution. ;

4. Restarting Procedures

In the early algorithms, the restarting strategy was usually to restart
whenever k=n or n+1. When n is very large and the number of clusters
of similar eigenvalues is vety small, this can be very inefficient. It is therefore .
often felt desirable to reset more regularly. If the gradient prediction
algorithm is being used, then it becomes natural to reset when

"= ellg™], i
as this implies that enough iterations have been undertaken to approximately
minimize a quadratic function closely related to a nonlinear objective .
function.

Powell (Ref. 4) has suggested restarting whenever
Ig(k‘Tg{k—l )g = 0_2Hg(k)”2.
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¢he left-hand sidz would be zerg if the conjugate gradient algorithm were
working with perfect line searches on a quadratic function. Its size js
therefore an indicator of the nonconjugacy of the search directions, and so
is an indicator that the cycle should be terminated.

Other measures could be similarly used; for instance, BT 08 o uld
be zero for conjugate directions and is available to the user of Nazareth’s
algorithm without additional store.

It also seems desirable to restart if the direction is not effectively
downhill. Powell suggests restarting if

5

_I_zng(kl

=d™7gM < _0.g|g™)2 (17)

is not satisfied, while in the codes reported in the tables the cycle was also
restarted whenever

le™7d =& g® 1), =000, Ly

i.e., whenever Wolfe’s Condition I was not satisfied.

5. Arbitrary Starting Directions

When it is decided to restart an algorithm, it is questionable whether
it is always advisable to restart by setting pV = —g(1).

Beale (Ref. 11) analyzed the modifications that arose in the generation
of conjugate directions if this assumption was not made and showed that
conjugate directions were still obtained if

Irkﬂ):_g(k—13+b1r(1)+bkrfk), (19)
where
(k+1)T_ «1)
g ¥
b, = t“'Ty“” 5 (20)

This approach allows a set of conjugate directions to be gcnerated starting
from any initial direction . However, the fact that 1V remains part of
the formula for “*" throughout the cycle may be undesirable, although
the storing of 1"’ would enable the conjugacy check

r(I}]"g(.'c-i—l;:o (21)

to be made and used as an effective restarting strategy.
An alternative way of allowing an arbitrary starting direction was
suggested by Allwright (Ref, 12), who introduced a change of variables,

x=1Iz (22)
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where
EF—I7
Then, a quadratic function
F(x—x*)=3(x - x*)"G(x - x*)
is equivalent to
F(z—z*)=%z-z*)"L"GL(z - z*),
and
VFE,=L'GL(z-z*)=L"G(x—x*)=LTg, (23).

which, when transformed back into x-space, becomes simply Hg. £
If the conjugate direction method is applied 10 make the direction
conjugate in the z-plane, then the directions in the x-plane are simply

p(n == ~Hg™,
P(k+1) = kD) _ *Hg(h”‘* bt(k),
where
g(k)THy{k—l)

(k-1)T (k—1)-
P Hy

There are many alternative ways of selecting H so that =
any preselected value p,. One simple formula is to set

o 88T pupi
T T T () T (1)
g 8 Png

but almost certainly this is not the best choice. ‘
Indeed, if the Nazareth three-term formula (15) is used to generate the .
set of directions, then the directions generated are conjugate for an arbitrary
initial direction '"; see Nocedal, Ref. 13. However, if t' is not the gradient::
direction, 1) can become zero away from the minimum. This implies that,
provided the algorithm is restarted in the unlikely event that :

[tV <ellg™], (28).

we can use the Allwright matrix to precondition the problem to improv
the eigenstructure of L'GL and thus improve convergence. However, this =
was not included in the algorithm when the numerical results were obtaine
the matrix given by (27) being used.
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6. New Conjugate Gradient Algorithm

The new conjugate gradient algorithm proposed combines the three-
term conjugate direction formula proposed by Nazareth with a restarting
procedure and includes a preconditioning matrix. The line search chosen
is inexact, but incorporates a parabolic interpolation and terminates at a
point that satisfies Wolfe's Conditions II and III. If any direction is gener-
ated that does not satisfy Wolfe’s Condition I, the method is reset to ensure
finite termination to a region around a solution defined by g'g=e

To be precise, the proposed method generates the new search direction
by the following formula:

t*=—Hg"+bt* '+ b _ 1", (29)
where
kT k—1
y Hy
bk*] = tkﬁ‘ijk—l 3 k> 1! (30)
kT k
y Hy
b, tkTHyk, (31)

and H is a positive-definite matrix. Tests are reported for two alternative
values of H:

(i) H=I, (32a)
(i) H=T1-ggn/28 —PuDh/DhEn (32b)

where g, =g'" and p, is the step direction before resetting k.
The algorithm is restarted whenever one of the conditions below holds:

(i) k=N+1,

Gi)  (plHy*)*>0.2(pl Hp,)(y*Hy"), (33)
(iii) Wolfe’s Condition I does not hold,

(i) lg*l=ellg”. (34)
v [Pl =ellg"|- (35)

The second test (33) checks whether the new direction is reasonably conju-
gate to the initial steepest descent direction in the frame being used.
The matrix H is updated at the restart of a cycle if

gipn<—CWI(pipMgrgs)],  C,=0.001, (36)

i.e., if the resulting matrix would be positive definite.
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The structure of the algorithm based on the above philosophy consists
of the following steps; at any stage, it requires 13 N-vector stores for z, g5
LT R At it s Pn. w* and a work space. Let us assume

the following notations:

SR 3 | P .
U =it 3 Loi= Uiy v, =t

etc., where v is anv given vector.

Algorithm 6.1 (OPCG)
Step 1. Select x'” k=0, i=0.

Step 2. Evaluate go=_g(x)", g, = +g,, pp = —g,. Set "= ~g0, H=1,
and a=1 \,(g;go)

Step 3. Perform an approximate line search, d,= at,, X; = Xo+d,,

Put k=k+1 and downrate all vectors 8-1= 8o, X_| =X, Xg=X,, €lc,
Evaluate g,=g(x,). For k>2, if the line search is along the correction
vector z,, then do one of the following:

() if gipn=~CV[(pip,)(glgs)], then go to Step 13; _

{ii) Otherwise, update the matrix H = [ ~ 248/ 8n g —PuPr/ Pres or
use matrix H = I, and continue.

Step 4. Calculate g,. If || go|| = e, stop. If i= Irmax, StOP.
Step 5. Calculate

Yo= &~ 815
Lg=—Hy,+pr.+yr_,,
o=z +(0—-1)t_,, withz =0, if k=0,

wo=w_+(8-1)y_,, with w_, =0, if k=0,
g5 =gy~ W,

where

0-1=-gld /ylt,, k=1, ‘
_ _1'0THy_1/_\'LHt_2, k=2, »
B= 0, k=0,1, L

_FJHRAJHLD k=1,
Yo, k=0.

|
|
|
|
|
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Step 6. If C\|lto]| - {|ga| = —15 go. then go to Step 8. For k>1, if
(p:H_\.G)2> O-Z(P:th)(J';—H}'u), then go to Step 8. If [|g5|l= C\llgo| or
[ 1ol = Cillgoll, then go to Step 8.

The first of these two conditions is Wolfe’s Condition 1, while the
others are tests (33), (34), and (35), mentioned above.

Step 7. If k=n+1, goto Step 8. If k=<n, go to Step 3.
Step 8. Test z, for Wolfe’s Condition I. If satisfied, go to Step 11.
Step 9. Set g, = go, pr = z. Update the matrix H.

Step 10. 1f gip,=—CV[(prpa)gngn)l,ie., H is unsatisfactory, then
go to Step 13; otherwise, go to Step 4, with k=0.

Step 11, Set 1y= 2y, gn =80, Pr =120, a=1.0, k=0.

Step 12. Go to Step 3.

Step 13.  Set g, = go, p» = t_,, k=0. Update the matrix H.

Step 14. If gppp=—C[(papu)grgn)], i.e., H is unacceptable, then
go to Step 15; otherwise, go to Step 4, with k=1.

Step 15, Set ty=—go, k=0, g, = —go, Pn=—8,; i.e., set H=1 Go to
Step 3.

The line search at Step 3 consists of first performing a parabolic
interpolation using the values of the function and its derivative at the starting
point and the function value at an offset point. If the predicted function
value does not satisfy Wolfe's Conditions II and III, then the Armijo (Ref.
14) procedure is adopted based on that step, i.e., the predicted step is halved
or doubled until

fix+ar)<f(x)+0.1af (x) s,
fix+2at)> f(x)+02af (x)1.

7. Numerical Results

7.1. Comparison Algorithms. In order to justify proposing a new con-
Jugate gradient code at this time, it was felt necessary to demonstrate that
it was indeed an improvement over existing available codes (Table 1). We
therefore chose for comparison purposes first the two standard Harwell
routines VAOSA and VA14A (Ref. 4), second the quoted results in Buckley
and Le Nir (Ref. 15), and also the two earlier Hatfield codes [CONGRA,
Dixan, Ref. 6; and CONLS, Dixon, Ref. 9].
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Table 1. Algorithm codes.

OPCGl = with preconditioner H and including test 33.
OPCGS  =without preconditioner H but including test 33
OPCG3 = with preconditioner H but excluding test 33.

OPCG4 = without preconditianer H and excluding test 32
BLALN = Buckley and Le Nir method {Ref. 15).

VAl4A = Harwell subroutines.

VAO8A = Harwell subroutines.

CONGRA = Fletcher-Reeves (Ref. 2) as described in Dixon Ref. 6).
CONLS = Dixon (Ref. 9).
FRCG = Fletcher-Reeves with the new line search.

Results for four versions of the new code are included for completeness,
with and without the preconditioning matrix H and with ind without the

restart test (33), as it was felt of interest to indicate the effect of these
innovations.

For each algorithm, the amount of computational efort is measured
in terms of the effective number of function ev aluations, given by EFE=
Ng+nNg, where n = number of unknowns, Ny = number of function calls,

and Ng = number of gradient calls. In all cases, the termination criterion
was set at

g'g=1E-4,

and the constant C, in Wolfe's Condition 1 was set at 1F —3.

7.2. Test Problems. The following are the details of the test functions
used.

n/2 10

(P1) Iixj= ¥ ¥ [eipl— Xaj1— r)‘sexp{"xzjri)*i}(p(_fi)

ji=ti=1
+5 exp(—101,) ],
=1i/10, i=1,2,...,10,
©=(5,0,5,0,...).

(P2) I(x)= g [exp(—x,z;) —5 exp(—x22,) —exp(—z,

+5exp(—10z)7,
z;=1/10,
{0y — (1’ Z)T.




| R

- 2 =

{P3)

(P4)

(P5)
(P6)

(P7)

(P8)

(P9)

(P10)

(P11)
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10
I(x)= E! [exp(—x,z;) —x, exp(—x,z;} —exp(—z)
+5exp(—10z) T,
5 =1/10,
¥ Wity 2,17
10
I({x)= i; [x5 exp(—x,z;) Xz exp(—x,z,) — exp(—z,)
+5exp(~10z) ],
5 =1/10,
xV=(1,2,1,1)7.
1(x) =100(x7 - x,)>+ (1 = )%
x=(-12,1)7,
T(x) =100(x{ - x,)* + (1 - x,)®,
x V== 137
I(x) =100(x, - x2)2+ (1-x,)2+90(x, — X3 +(1=x;)?
T10.1{(x = 1) +(x,— 1)} +19.8(x, — (x,—1),
xP=(-3, -1, -3, -1}
n/4
I(x) :j; [(x4 5+ 1W0xs;..0)"+ 5(x45, _xﬁ):“x‘*jﬁz‘znj_,)“

+10(x4j—3'—x4j)4]’
§rsify ~ B E o T
n/2
I(x) :igl [100(3‘2@ _‘xif‘l)z—,-(l ‘xzi*-l}z]a
xV=(-12,1,..)"
169= 3 [i2x~x_)7,

F =i, 1 1,..)%

I(x) =‘§2 [100(x, —x3)°+ (1~ x,)?],

xV=(-12,1,.. )"
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73

(P12) I(.\'):_i [n-’rif'}: (A sin(x;)+ B, cos{x)))jl-,

i= =1

A, =8 B, =i6,+1,

ij>

0 A
51‘5—{ ’ ey J
: 1, it i=j,
x=(1/n1 n,...).

7.3. Numerical Results. The numerical results have been presented in -
two tables. In Table 2, the results are for the classic test problems with
n=4, In Table 3, results are presented for some problems with 10=< n =<6,
This latter set of results is the more interesting. Surprisingly, the results
without the preconditioning matrix H (i.e., OPCG2 and OPCG4) are better
than those with it, and this led to the rediscovery that the three-term:'-E=
conjugate gradient formula generates conjugate directions for any given
starting direction ¢° [reported in Dixon, Ref. 16, and previously in Nocedal,
Ref. 13]. As the choice of H used only had the effect of making the first
direction the steepest descent direction in the transformed space, it is not
necessary for this purpose and could be chosen to have other desirable
properties. The results with the reset test were usually better, but not
universally better, than those without the reset test, and it has been retained,
the code OPCG2 being adopted as the definitive version. On comparing
the results of this code with those of other codes on the large-dimensional
problems in Table 3, it obviously well outperforms VAOSA and VAO14A,

Table 2. Comparison of performance on problems with n=<4,

Problem 1 1 2 3 4 5 6 7 8 12

n 2 4 3 4 4 2 2 4 4 4
OPCG1 — 76 — — = 386 90 — 127
OPCG2 81 70 59 84 143 170 37 F4 119
OPCG3 — 136 —_ — — 386 90 — 127
OPCG4 81 70 59 67 140 170 37 F4 126
VAI4A 36 80 45 92 120 195 Fl F2 345
VAQOSA 63 280 156 147 690 276 300 640 365
CONGRA 272 620 84 600 1251 366 99 390 446
CONLS 80 690 62 134 362 170 247 1680 472
FRCG 178 502 104 87 111 495 F3 1111 104

F1. The run terminated with 7=0.018( f*=0).
F2. The run terminated with 7= 1.6(f*=0).
F3. The run terminated with 7=1.93E —3(f*=0).

F4. The run terminated with 7 = 7.8, a stationary point which satizfies the convergency criteria.
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Table 3. Comparison of performance on problems with 10= n =< 80.

Problem 8 8 9 9 10 10 10 11 12
n 60 80 10 20 10 20 30 10 40
0OPCG1 2111 6646 974 4111 119 439 831 — 225
OPCG2 1688 2055 393 801 119 439 831 702 225
QPCG3 2183 1566 782 2326 119 439 831 —_ 225
OPCG2 2122 2964 454 888 119 439 831 708 225
BLALN 7991 5913 671 1281 209 819 1891 858 —
VAL4A 2623 3483 671 1281 297 819 1643 935 410
VAOSA 9577 16443 957 2100 440 1029 2015 1100 4100
FRCG 3906 7463 1326 2511 119 439 863 F5 224

F5. The run terminated with f=1.8(/*=0).

and the results are also an improvement on those reported in Buckley and
Le Nir {Ref. 15). On the less interesting small-dimensional problems, the
situation is less clear. Out of interest, an algorithm was written combining
the Fletcher-Reeves conjugate gradient formula with the line search strategy
incorporated in the new code. This is reported in the tables as FRCG and,
as expected, the new code (OPCG?2) also regularly performed better than
this modification, though this simple code did surprisingly well.

8. Conclusions

In this paper. a modified form of the conjugate gradient algorithm is
motivated, having desirable restart properties, that outperforms a wide
subset of current conjugate gradient codes. The new code contains provision
for a preconditioning matrix that ought to lead to a further improvement
in performance.
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