m
ﬁé‘

;

gxPERlENCE RUNNING OPTIMISATION ALGORITHMS ON PARALLEL PROCESSING SYSTEMN

@ ¢ W Dixon, D Patel and P G Ducksbury
he Numerlcal Optlmlsatlon Centre

§he Hatfield Polytechnic

‘0. Box 109

ﬁatfleld Herts. AL1O 9AB

nlted ﬁlngdom

The avallablllty of parallel processing machines makes it possible to envipage BEIVEERS

%£ur types of numerical optlmlsatlon problems that still present difficultien On fas

%equential machines. These four Types of problems are described, then two paril sl
ICL DAP and NEPTUNE are briefly described, and ways of map| g

gwoceSSLng machines,

L

“the problems onto ICL DAP and NEPTUNE are discussed. Finally, our experience

ﬁmplementing parallel algorithms on ICL DAP and NEPTUNE are getailec.

1. INTRODUCTLON

Me are concerned with solving the optimisation problem

min £(x) x € R

%ubgect to simple upper and lower bounds, 1-&- 1i < Xy < u -

-]

ﬁghere exists a number of sequential algorithms with superlinear convergence, bakkl =

he iterative scheme,

) 0 ()

]
-~
=3

wwhere p(k) is the search direction and @ th

e step size. These algorithmns can MHI¥E

most optlmlsatlon problems. Given this situation the guestion arises as to WY UL

wshould we be interested in introducing the parallel processing concept in num@liis

-0pt1mlsat10n. The main reasons are:

a) The processing time for solving sSOme of the industrial optimisatien problalii 18
too long,

e some problems that cannot be tackled because their size 1eads L0 WEHERS

There ar

gifficulties on sequential systems,

People only tend to pose optimisation problems that they feel might Do polulle

ﬁﬁy jntroducing the parallel processing concept to numerical optimisation Wi hops

Lreduce some of the difficulties encountered in the seguential approach.

Ui four different situations where we feel improvements are most likely in 8

l"u!ul i of optimisation problems with Lhe our rently avallable |ml‘:|||l'! procEaasng

(TR SR RELL §)F

#

b 893

PARALLEL COMPUTERS

i} ﬁmall dimensional problems

gmall dimensional problems, n < 100, where the cost of computing the objective
/
function/gradient vector/Hessian matrix greatly exceeds the overheads in the opti-

misation part of the algorithm.

T ™ *
b) Large dimensional problems CARNEGIE MELLONW C.mmp: Crt

Large damens o o- f ————

DENELCOR HEP

Large dimensional problems, n > 2000, where the combined processing time and

TLLIAC IV
ICL DAP

LOUGHBORCUGE UNIVERSITY HEPTUNE
‘MANCHESTER UNIVERSITY CYB&-M

CRAY 1
CYBER 205'

i

storage requirements causes difficulties.

¢) On-line optimisation
On-line optimisation problems, like the optimisation of car fuel consumption, can-

not always be solved using the existing sequential algorithm because of the time

fication of parallel computers

Figure 1. Classi
factor and in these problems a saving of the order of four or five could be suffi-

ssors is in the arez of solving

e ﬁost of the research in optimisation using vector proce

@ EElEiEZE£gEEl*Ei9EEA—EEEEEEEEEEEELEEEElEmﬁ -Qery large optimisation problems. The underlying optimisation approach is the

Problems where the cbjective function has many local minima. For these problems Eonjugate Gradient algorithm. The principle is to iyectorise' the arithmetic within
the sequential algorithms for locating the global minimum are still relatively conjugate gradient algorithms. To make an efficient use of a vector processor, an
unsatisfactory and expensive in computer time. aigorithm must be arranged to do nearly all its arithmetic and logical operators on

. : . long vectors. Various researchers, Rodrigue and greenbaum [1], Rodrigue ez al (2],
Later in this paper we will consider each classification in more detail; describe 5 : . e mmiient

i) ‘gchreiber [3], have reported their experience in implementing conjugateé & aalen
parallel algorithms and present numerical results. RBefore we consider the inter-
. A . T i thms on 1yector' machines.
action of the four classifications mentioned 2DOVE ané the parallel processing algorit

computers, we will priefly described the parallel processing computers available 5.1.2 Array processors
o e An SIMD array machine is defined as & computer with 2 single master control unit ‘
and multiple directly connected processing elements (see Figure 2). Each processing

5. CLASSIFICATICN OF PARALLEL COMPUTERS element is independent, i.e. has its own registers and storage, pbut only operates on

command from the master control unit. Data access is from its own local memoTy and

We classify parallel computers as either SIMD (Single instruction Multiple Data) or cruction as

ithat of its nearest neighbour. Each processor carries out the same ins

all the others but on its own specific data set.
the number of processors that can be connected together in an

PROCESSING
ELEMENT

LOCAL
MEMORY

MIMD (Multiple Instruction Multiple Data). Because of the simplicity of each

2.1 SIMD systems -
processing element,

W bdivi i i i
e subdivide the SIMD machines as vector and array computers. The aifference 18 SIMD array sense can be very large.

based primarily on the way data is communicated to elements of the system.

PROCESSING

2.1.1 Vector processors
L (At ELEMENT

Vector processing is the application of arithmetic and logical operators simultane-

LOCAL
MEMORY

ounly to components of vectors. This leads toc a straightforward reduction in time

MASTER
CONTROL
UNIT

il the arithmetic and logical operations stage whenever 2 vector processing system

i communication
In uned. Examples of vector processors are CRAY-1/S and¢ CYBER 205 systems. Both
Contnin pipelined vector arithmetic processors capable of performing cperations on
PROCESSING
arrnys at very high speeds. in one strict sense, pipelined computers are not para- ELEMENT
|1e¢l computers as the parallelism occurs within the fundamental arithmetic operations.
llowever, their efficient use depends heavily on the redesign of algorithms to make

affielent use of the parallel ar {thmetic option

[igure 2 Array processor

| .

i

o[lhe application areas for an array processor are:

/I Inipe problems such as weather data processing,

I problems that have a large number of independent data sets.

(e earliest SIMD array machine was the 64 processor ILLIAC IV. The most recent one

{11 the UK is the 4096 processor - ICL Distributed Array Processor (DAP).

As one of the parallel systems we have used for the implementation of parallel algo-
rithme is the ICL DAP, we will briefly describe the ICL DAP.

The ICL DAP at Queen Mary College, London, comprises 40386 elements each originally

with a local store of 4K. (This has now been increased to 16K). All the processors

obey a single instruction stream broadcast by a Master Contrel Unit. Processors are
arranged in a 64 x 64 matrix form and each processor has access to the four neigh-

bouring elements and to their stores.

A high level, special purpose language, called DAP-FORTRAN, is available on the DAP;
this is an extension of FORTRAN with additional features that enable parallel algo-
rithms to be expressed naturally and efficiently. DAP-FORTRAN has about 50 built-in
functions for manipulation of vector and matrices. The implication of the hardware
structure is that 64 x 64 matrices, 4096 long element vectors and 64 element vectors

can be processed as single entities.

For example the DAP-FORTRAN declaration
REAL A(,), B(,), G()
is equivalent to the standard FORTRAN declaration
REAL A(64,64), B(64,64), G(64)
and the DAP-FORTRAN statement:
A=A+B
is equivalent to the standard FORTRAN loop:
DO 10 I=1,64
DO 10 J =1,64
10 A(I,J) = A(I,J) + B(I,J).
The statement A = A + B represents one operation performed simultaneously in all 4096
processing elements. The example below illustrates how some of the DAP-FORTRAN

built-in aggregate functions.can be utilised in numerical optimisation.

Consider a 64-dimensional Resenbrock function

32
r = 2 = z - 2
gl f_l 100(x3; ;3 = %p3) " + (1= %5 4)

The first four components of the gradient vector are:

= 2 = =
L (X)) = 400x, (x] = %5) = 2(1-x))

y R 2 _
LJ(X) = EOO(x1 x2)

ga(x) = dUUxB(xé = By} = 2(1 = xg)

2
—200()'.3 - xA).

s}

oy
1%
i

the DAP-FORTRAN code for the analytic gradient vector is

G = MERGE (400 .0*X*(X**2 - SHLP(X,1)) - 2.0%(1.0 - X), - 200.0*(SHRP(X¥**2,1) X))y

.NOT.ALT(1)
yhere G and X are declared as

REAL G(), X().

The components of G, the gradient vector, are computed in parallel.

ve briefly summarise the effect of the DAP-FORTRAN built-in aggregate function used

in the gradient evaluation.

SHLP - This function returns a vector value that is esgqual to the first argument

1aces to the left, using plane geometry. The number

shifted a number of p

of places by which the vector is to be shifted is given by the second argu-

ment.

SHRP - as for SHLP except that the vector is shifted to the right.

‘MERGE - returns & Vvector (or matrix) result, components of which are selected from ‘
e

corresponding components of the first or second argument, depending on wheth

the corresponding component of the third argument is .TRUE. or .FALSE. res-

pectively. .
ALT _ function takes a single integer scalar argument and returns a logical vector
value. If the value of the argument modulo g4 is i, the logical vector will

have its first 1 components .TRUE, and so on in alternation until all the

components of the vector have a value.

e.g. let 2 = (Zl, Zye Zas z,)

Y = {yyr Yoo Yy ¥,

0)

l
™~

SHLP(Z,1) 5

SHRP(Y,1) = (0, ¥y, ¥y ¥g)
MERGE (Z,Y, ALT(1)) = (¥, 251 ¥z Z4),

; i ke T
Details of all the DAP-FORTRAN built-in aggregate functions can be found in the IUI

DAP manuals [21].

2.2 MIMD systems

An MIMD system is defined as a series of Processors (minis/micros) working independ
4 \

ently ar wwrwlirl e number of prodennors cannot. remch the same order am an APFAY
NLL) 1 pare - O

T:] T@mmoOrn (]
ar becausne ol Lhe <H\I|||ll‘a||v i cammuniontions helweorn procesport and th
procens e i 6

sor (HEP) of Denelcor ||

Anoth
er parallel system we have used for the implementation of parallel algori thin

is the LUT NEPTUNE, which is briefly described below. The system contains 4

processors (Texas Instruments 980/110 minicemputers) ang the current configurat|
o

is shown i i '
n in Figure 3. Each processor has access to 96Kb of memory (local memory)

Local memory
S0Kb

Lecal memory

Local memory

90Kb

Local memory

90Kb + 10Mb

Figure 3.

Hence each proc
nett memory of 160Kb.) oy e

The S0Mb drive can be accessed by e
Interrupts being sent to them all.

ach precessor with disc

e sof 1
software used for executing a program on the NEPTUNE multiprocessor system is

“landard FORTRAN and some Pseudo~FORTRAN syntax constructs

The Graatt e dong .
reation and termination of pathe with ldentical vode 18 deflined u
1) (L] CRNETT

-Mellon University, PAG Um0

897

$DOPAR 10 T = 1, N1, N2, N3

'code'.,
10 $PAREND.
he creation of paths with different code is defined using

$FORK 10, 20, 30, 40
10 'code 1°
GOTO 40
20 'code é'
GOTO 40
30 'code'
40 $JOIN

Creation of paths with the ‘same code and with each processor forced to execute the
code conce and once only is defined using

$DOALL 10

'code'.
10 $PAREND.

Shared data is defined using

$SHARED variable list.
All other data, including program code, is held in local memory.

For critical sections of the program the user has available up to 8 'resocurces' which
can only be owned by one of the processors at any one time. Resources used are
declared using

$REGION list of names
and claimed or released using

$ENTER name or $EXIT name.

A fuller description of the NEPTUNE multiprocessor system can be found in Evans, et
al [20].

New MIMD architectures, called data flow computers, which depart dramatically from
the classical Von Neumann architecture are in the design stage. The data flow
approach to computing involves evaluating statements in a program as and when their
input operands become available. There has been a lot of theoretical work on the
data flow architecture. Texas Instruments designed, built and benchmarked a four
laboratory model of a data flow computer to assess the benefits that might arise,

Sauber [5]. The main conclusions from their experience in using a data flow com-
puter were:
a) given sufficient program parallelism, the procesring power grows inearly with the

number af processors,
.

898

yiven nufficient parallelism, all execution overhead is overlappable with useful

worl, and
omputer can find the necessary parallelism in ordinary programs, '€Xpose it

0ot

i

andl Lhen partition it automatically.

oo early to say how numerical optimisation algorithms can benefit from data

low computers and no data flow system .was available for our use.

o design of parallel algorithms for SIMD and MIMD requires two quite distinctive
pproaches. The main difference is, for a SIMD system we reguire that tasks should

s i1dentical, for a MIMD system we can dispense with that requirement. For a MIMD
vitem we can also dispense with the requirement that tasks should be synchronous

| Lhe cost of memory congestion and convergence problems.

\Lher distinctions will become apparent when we describe the parallel algorithms.

|, PERFORMANCE MEASUREMENT
\wasuring the performance of a parallel algorithm is dependent on the type of para-

| 1] system used.

| MIMD system

lwo concepts available for measuring the performance of thecoretical parallel algor=

i thms are 'SPEED-UP' and 'EFFICIENCY'. They are defined as follows:

.+t 1(P) be the processing time using P identical processors. Then the 'speed-up'

{hctor over a single identical processors is

and the 'efficiency’ is
%

E =
F o

ldeally we might expect the 'speed-up' ratio, Sp, tc be p and hence the efficiency
I i :
5 to be unity. In general, however, some degradation must be expected. The main

{actors that contribute to this degradation are:

) at the system level:
i) the actual processing speed of the processors differ,
ii) input/output interrupts,
iii) memory contention,
iv) bottleneck in the data transfer.
I} at algorithmic leved:
muat wiall

i) synchronisation losses, if, say, p tasks are to be performed, all

for the slowest,

i1) eriticnl section losses, if many procespors are Lrying to accenn Lhe global

53,2 SIMD system

E
}ghe 'speed-up’

data set at a particular instant, Lhen only one procapror ga el wach
access at any instant, so while that processor is accessing the global dalf

Let most of the other processors are idle. This implies a time delay.

We can minimise the waiting time by ensuring that access to the global datn

set is kept to a minimum.
{

and 'efficiency' ratios defined above are meaningless concepts for a
ESIMD type architecture. the performance of a parallel algorithm, for the SIMD type
measured in relation to a sequential system. The equivalent

garchitecture is usually
The performance ratio,T , is

%sequential algorithm is on a sequential system.
igiven by:

on a sequential system

_ processing time
on a parallel (SIMD) system

T = - -
processing time

.This does, of course, depend on the sequential system chosen as the basis - in the
gresults quoted in this paper the DEC system 1091 at The Hatfield Polytechnic was
al complication in any such comparison arises because the opti-

an SIMD system often differs considerably fr
therefore, affect

?chosen. An addition
-mum parallel algorithm for om the opti-

and the choice of sequential code can,

imum sequential algorithm;
t seguential code be used or one similar

the result. In particular, should the bes

in principle to that implemented on the MIMD system.

INTERACTION OF PROBLEM CLASSIFICATION AND PARALLEL PROCESSING

ow let us consider the interaction of three of the four classifications, mentioned
" in Section 2, with the type of parallel processing computers we have considered.

on the SIMD ICL DAP and MIMD NEPTUNE systems.

In particular, we will concentrate

4.1 ': Small expensive problems

Caleulating function in parallel

?Consider the situation of an extreme class of industrial problem in which, when
a solution by a seguential algorithm, the time spent in the function/

?attempting
say, over 1000 times as long

fConstraint evaluation routine is, as that spent in the

QOptimisation part of the algorithm.

. A particular example of this is the case of optimisation of aircraft fuel engine
performance subject to noise constraints and performance specifications. Details

" can be found in A H 0 Brown 8]

! we look for parallel features in the function

of Rolls Royce Ltd. To parallelise such a problem

evaluation routine.
plies to eleven different

there is an

obvious feature in the performance specification which ap
s and they can be computed in parallel.

in-flight condition
s more applicable to an MIMD system than t

independent, this approach i o an SIMD

§ tyntem.

As each parallel task is

Doo

When the function evaluation can be separated into a number of identical tasks an {n

i data fitting problem

min BiX) =

where each Sk(x) is an identical calculation using different data, then we have an

!ﬂbious calculation where (if M < P, the number of proceésors) an SIMD machine can
be used.

Sargan, Chong and Smith [4] have solved large scale nonlinear econometric models on

SIMD DAP by separating the objective function into identical tasks.

The efficient sequential approaches for solving small dimensional unconstrained opti-

misation problems are:

Modified Newton techniques: 2<n<s5
Variable Metric techniques: 5<n <120
Conjugate Gradient techniques: n > 120
Conjugate Direction techniques: n < 30.

Nearly all efficient methods for solving unconstrained optimisation require the gra-

dient vector g to be evaluated at 5(k). for scme very expensive industrial problems,

which may include simulation, the calculation of g can be very time consuming and is
much longer than the overheads asscciated with calculating the search direction p

given g. The calculation of g is therefore the part of the algorithm where most
benefit from parallelism can be expected to cccur on such problems, The components
of £ are not identical, even for a simple function. If we can cbtain an analytic

expression for & the compeonents can be computed in parallel on MIMD machines but not
on SIMD machines. For an MIMD machine the parallel tasks are the calculation of the

components of g.

For most industrial optimisation problems, cbtaining the analytic expression for £

tan be a very tedious process., We can use estimated values of g, obtained by some

finite differences scheme, and this would be ideal for SIMD machines. There are
efficient sequential variable metric and conjugate gradient codes which use a central
lifference scheme to approximate £, 8o this may be expected to be acceptable on a

lirallel machine.

ot us consider the implementation of & modified Newton algorithm on the ICL DAP.

& seguential system tﬁe modified Newton technigues for solving unconstrained opti-
Ation problems is one of the most efficient available for small dimensional prob-
W where 2 <n < 5. By introducing parallelism into Medified Newton technique,

le for implementation on the ICL DAP, we would expect to increase the range for

"h Modified Newton technigue is most efficient.

e Mo ie Newton approach in aecond derivalive mefhod, i.e. not only do we need

L

w 901

L paloulnte g, but we also need to calculate the Hessian G. The elements of G are
4 Ly
glven by
; I
Yig " ox, ax.
. J

yo could approximate g and G by some finite differences scheme and this would be an
(] -

{genl parallel .calculation on the DAP.

The overheads in.solving

Gp =~-g

to determine the search direction p will also be reduced on the DAP.

the final stage in the modified Newton algorithm is to select the step size a.

This is often done by a search along a preselected curve. For the DAP implementation

we consider three possible searches.

a) 'L - D' search (line search)

b) '2 - D' search) .
appropriate choice of planes.
¢) '4 - D' search)

The '4 - D' search seems to be the most attractive propositien. For problems with

4 < n < 64, the parallel algorithms based on this idez will be considerably more effi-

cient and also reduce the number of Newton iterations. In the next section we des-

cribe the parallel Modified Newton algorithm which we implemented on the DAP.

Parallel (SIMD) Modified Newton algorithm
The parallel Modified Newton algorithm consists of the following steps:

Step 1: 1Initial guess X{Oj; h, the step length and e, the tolerance.
(j i . is a unit vector along the

Step 2(a): Calculate f{x + hai + haj) all j > i, where e, 1 .

ith axis. This function evaluation is a parallel calculation.
Step 2(b): Calculate the gradient vector g and the Hessian matrix G by the following

finite differences scheme:

= - f{x - ha,)]/2h
g = [fix + hai) (x »] l
b 2 : :

G., = [flx +ha + ha,) -Ff(x +ha) - f(x + ha,) + £(x)]}/b i43]

ij = = i 3 = i J

G, = [f(x + ha,) ~ 2f(x) + £(x - ha;)]/h*

ii = i =
Step 3: Stop if max | g; | < ¢
Step 4: Solve a set of linear simultaneocus equations:

Gp = - g , using DAP library subroutine F@4GJNLEG64.
Step 5: We considered three possible searches

(i) 4-dimensional grid search
The iterative step given by
(k) (k) (k)
xH LB ane p™) 4 (a2)e,g™ 4 (a3)ega M 4 (ad)aye,

L generalon 4006 pointna

D02

A o - ullnltlal
ng
G =y e
2 1 T
g2 Geg
dTg !
an == oy ¥ 2
3 1 T
d,6d,
i (4.1)
o = * dag
45T %1 T
d,Gd,,
_ (k) (k-1)
dy = X - X
i = x(k—l) _ X(k~2)
...4 - 24
Al, A2, A3 and A4 are (64 x 64) matrices given by
BLu . o P [-2,-2.*2,—2,—2,—2.—2,—2.Efl,—1.—1,—1,—1,—1.—1,—1:
0, ...021, L.1l2, ... 213, ... 3.4, 4.
S w34 (4.2)
A2 0h row = ['2"1'O’1’2'3’4'53'2“1’0'1’2’3'a'5i
S5 il BT AR 5] {4.3)
L [-3,-3,—3,-3,-3,-3,—3,-35-2,-2,~2,—2,«2,—2,-2,-2:
1, ... 1.0, ... 0.1, RN . I 0 i Y 2.
3, ... 35&, : i 4 {4.4)
A% col = [-3,-2.-1,0,1,2,3,&;-3,—2,-1,o,1.2,3,a2
B2 21051, 253,4) (4.5)
The 4096 points generated are 1x, i=1:2: wws 4096
if min REIE R O s
i=1,...4096 -
5!
then set al =10 and recompute search step.

As soon as

1X(R+1)) (k)

min £
1,...4096

<f(x')

i

then reset a, = © initial
1 1
(ii) 2-dimensional grid search
The iterative step is

X(k+1) (k)

=X + (Al)alg(k)

(k)
+ (A2)025

where matrices Al and A2 are given by:
(n) (4.2) and (4.3) respectively.

(i) Al
VL [0

(We call this VERSION A).

s =15.5,=15, 1A4.5, =14, +oonns],q‘r,.]i,‘jhl“}

b

(We call this VERSION B}

The iterative step will generate 4096 points; in

for SRR

\k by (4.1)

(iii) 1-dimensional search

T AR

The iterative step is

X(k+l) = i(k) + (Al)a (k)

T

&
%§teps 2 to 6. The DAP can perform 4096 function evaluations

“than the fast sequential machines (cpC 7600) due to the bit s
the 4096 processing elements in the DAP. Let the ratios of
‘a rough idea of the value of 1, we obtained processing times

zations of five 64-dimensional test problems (specified in App

are distinct for VERSION A, the rest are identical.

%_For the 2-dimensional grid search, ‘we considered the plane defined by
‘2(k) and g(k), as this plane contains the directions usually chosen in

éequential codes to make progress when G is nearly singular.

% 1B

% where the matrix Al is given by

(a) (4.2) (VERSION A)

% {b) Al has the values ~102{0.05)102.75 in long vector order (VERSION B).
: The iterative step will generate 4096 points in yersion B but only 8

; dlstlnct points for VERSION A.

ﬁtep 6: §(k+l) = Arg min leX(k+1))

i i=1,...4096

5 — minimising over & preselected grid.

%tep 7 Return to Step 2 with k = k+1-

3
‘The strong feature of the parallel algorithm is the parallel function evaluation in

%e naive to assume that since the DAP performs 4096 function evaluations in parallely
the proce531ng time would be of the order 4096 faster than the sequential calculal il

In fact the arithmetic operaticns in the processing elements of the DAP are slower

fact, only 64 points

The a's are given

in parallel. It would

erial nature of each ©
the speed be 1. To e
for 4096 function eviv il

endix A) on ICL DAFP, |1}

Table 4.1.

The proc

?2980 and DEC 1091. The processing times are displayed in Table 4.1,

; Functions Parallel evaluations Sequential evaluations

? DAP DEC 1091 ICL 2980

© | Quadratic 0.045832 2.601 1.00928

3 Rosenbrock 0.108032 3.963 1.315296

. | Powell 0.067200 4.453 1.563352

% Box (M) 11.62174 189.779 §3.995920

g' Trignometric 0.351760 51.267 15.554040

b e ——

Average ratio 1 20.7 9.3

F—— I

essing times for 4086 function evaluations (time in e o

Lo L] .

Exporimental Remultu

Parformance measurement ,

The criteria we have used for measuring the performance of the parallel algorithm is
Lo compare the processing times obtained on the DAP in relation to a sequential sys-
tam. The sequential system we used was the DEC 1081 at The Hatfield Polytechnic.

The codes used for the sequential system were:

(a) The standard Newton-Raphson method from the NAG Librfary, routine EG4EBF [Ref. a byt
This is the nearest equivalent sequential algorithm.

(b) Variable Metric algorithm, the usually recommended approach on a sequential systen
for a 64 dimensional problem. We selected the Numerical Optimisation Centre's
OPTIMA Library program OPVM [Ref. 13], an implementation of the Broyden-Fletcher-
Shanno variable metric algorithm.

(c) Noticing that the structure of some of the test functicns was symmetric and
noting that this symmetry would favour a conjugate gradient approach, the Harwell

Library routine VA14A [Ref. 14] was also used.

Numerical Results

The five test problems (specified in Appendix A) were run on the

i) DAP, using the parallel algorithm

ii) DEC 1091, using
(a) Modified Newton-Raphson, NAG routine, EP4EBF
(b) Variable Metric, NOC OPVM
(c) Conjugate Gradient, Harwell VAl4A.

We use approximate values of g, the gradient vector and G, the Hessian, obtained using
finite difference schemes described earlier in the section. For éach test problenm
we used two sets of starting points, a symmetiric and a nonsymmetric set. The numeri-
cal results are displayed in Tables A1 to AS.

Table Al displays the processing times for the sequential codes.

Table A2 displays the DAP processing times for '1-D' search (VERSION A).

Table A3 displays the DAP processing times for '2-D' search (VERSION B).

Table A4 displays the DAP processing times for '2-D' search (VERSION A).

Table A5 displays the DAP processing times for '2-D' search (VERSION B).

Table A6 displays the DAP processing times for '4-D' search.

The performance ratioc is displayed in Tables A7 and A8,

It will be seen from the numerical results that the parallel algorithm consistently

In fact
the DAP performed extremely well compared with the Ssequential Newton-Raphson algorithm.

outperformed the Newton-Raphson and Variable Metric sequential algorithms.

of caution: Although the sequential Newton-Raphson is the nearest equivalent

ential algorithm to the parallel one, it is rarely used to solve a 64-dimensional

rehlem. It is therefore fairer to use the Variable Metric method in the comparison.

006

" :
%r problems with special symmetry in the objective function, the parallel algorithm
%13{ Just performs better than the Conjugate Gradient sequential algorithm (in terms

performance ratio}; but for the nonsymmetric test function (Trignometric funct-

ioﬂ) the parallel algorithm performed considerably better than the sequential Conju-

Consider the '1-D' search algorithm: VERSION A performed

ate Gradieﬂﬁ algorithm.
. For the '2-D' search algorithm, VERSION B performed better

etter than VERSION B.
an VERSION A. Looking at the performance ratic and the number of iterations, there

ib not much toichoose between the '2-D' search and the '4-D' search;

1ems.the '2-D! éearch performed better than the '4-D' search and for other problems

for some prob-

gw '4~D' search performed better than the '2-D' search. This indicates that con-

giderable further research is needed into the choice of the extra directions if the
%ossible benefits of the 4-D search are to be ohtained.

iz & Large dimensional problems

For large dimensional problems, say n > 120, the parallel Modified Newton approach

would not be practicable, due to shortage of store on the DAP.

A different approach has been implemented on the ICL DAP for solving optimisation
problems formulaéed by solving partial differential equations by finite elements as
;t was felt these would typify this class. The solution method follows the finite
;lement approach and each processor of the DAP handles its own finite element. The
solution is then completed by implementing linear or nonlinear versions of the conju-

igate gradient method as appropriate.
K3

Ebnsider the solution of partial differential egquations
3

.

% 3 aT 3 3T (5.1)
8 £ = K = =.-9¢@

#EJ 2x Kx 3x * ay y 3y

4 2 2 3 .

TR L . S (5.2)

ax* 3y ? ax

It is wellknown that both the equations can be solved by minimising a functional

1
& JJF.dV.

The problem

We will briefly describe a solution method for solving the 2-D heat conduction equa-

tion (5.1). The solution to equation (5.1) will occur at the minimum of
(& (2L 2Ty (5.3)
= o — - 2QT dv
4 = JJ Kx(ax) + Ky(y) @
The objective function becomes one of solving
= r
min I = | F(T(x)) dv (5.4)

Subject to the appropriate boundary conditions, Newman type boundary conditions were

imposed. Now when using finite elements the domain V is covered with a set of grid

| —

Hok)

points x, and then divided into a set of elements Ui (of rectangular shape) with grid

k
points.at intersections.

¢ki(x) =1 at X,

(x)

For each element there are shape functions ¢k‘ such that
i

¢ 0 at

xj for j # k and at all points x ¢ Vi

X'kixi J’kiyi y

n (1 -~ ™)/4.

ki

i.e. ¢ki(x) = (1 -

It is now possible to approximate T(x) by a linear combination of the shape functions.

z Tk¢ki(x) (5.5)
K .
so that equation (5.4) becomes approximately
f
min I = J F(i Tk ¢ki(x)) dv. (5.8)

On substituting (5.5) into equation (5.3) we get

re 1 3¢
=JJK{I—T}2+R{E'3—T}’—2Q£¢'I‘ av (5.7)
i ¥ i
and on differentiating this with respect to 'I‘i to get VF,
1

rr a¢ __l 3¢i 3¢j
2K — {E T 2 — {I —= -
JJ . 1o+ Ky {A " J.] QQfQi dav. (5.8)

Differentiating once more gives V°F, .
1)

) rr 3¢i 3¢ . a¢i Efi
v, .F(T) = 2K — _—
i (T) JJ x 3x ax 2Kyay 3y av.

When the Qi's are point sources at the nodes they can be moved outside the integration

and then equation (5.7) becomes

rr ., 3.

F(T) = I K {r —= 2 — 2 -
(T) ! JJ x{_ = T} + xy{; = Ti] av - 29.T, (5.7a)
e 1
el
equation (5.8) becomes
v.F(T) fi s 5t L iy o 3
y = 2K — {I — s — -
5 el H w Tx {J v T } + 2Ky o {z ay {z T Tj] av - 29,
el _ J J (5.82)
and equation (5.9) becomes
i 2l rr 80, 29, 3, 3¢j
9%, F(T = o S S |
i3 }el H E:Kx S s 21‘:y gl dav. (5.2a)

el
The solution of problem (5.6) then becomes equivalent to the solution of the set of
equations (5.7). If the partial differential eguations are linear this is a set of

linear simultaneous equations which could be written Au = f.

\

mﬂnllun of the set of equations
F
L4

F en solving equations of the form

Au = £
&mre A is a real N x N matrix
§ u an N unknown vector
@ f an N\known vector

1{ N is large'%here may be problems with computer storage. In the finite element

approach the matrix A will be held as

£

¥ E

; E a® (namely, the sum of all the elements matrices).
W e=1

i

ﬂl the values in Ae willl be zero except for those occurring in rows/columns corre-

5pondlng to variables in the e. G element. It is, therefore, possible to solve the

above set of equations without assembling the original matrix A. We have used the
ﬂement matrices individually to evaluate Ap element by element, by taking each ele-

ment matrix in turn and multiplying it with the correct elements of the vector p, the

answers being stored in the appropriate processors. This makes the use of the con-

jugate gradient method advantageous.
5

Conjugate Gradient method

The conjugate gradient method is an iterative method that converges to the true solu-

tion in a finite number of iterations assuming no rounding errors. The idea was

Snitially presented by Hestenes and Stiefel [¢] and subsequently modified for optimi-

R

gatlon purposes by Fletcher and Reeves [8].

ﬂe have successfully implemented parallel conjugate gradient algorithms, linear and
rmnllnear cases, on the ICL DAP parallel processing computer. ‘We will briefly des-—
crlbe sequential linear and nonlinear conjugate gradient algorithms and then show how
‘the solution of the partial differential equation (5.1) has been mapped onto the ICL

DAP. For a brief description of the ICL DAP and the language for implementation

refer to Section 2.

The linear conjugate gradient algorithm

fThe basic linear algorithm used for solving the set of equation Au = f is described
ﬁelow.

£1. Evaluate V?F (A).

o, Initialise the right hand side vector E(o) {it is set equal to the source/sink

points and zero elsewhere).

éB. Set E(l) = £(o) and E{O) = E(O) (u being the unknown and p the search direction).
gd. Evaluate g(o) = A E(O)L‘ (We can perform this operation without having to
é assemble the matrix A).
45, Evaluate §(1)= E(O) - g(o).
6. 1r f(l)T.g(l) < ¢ then stop.
7. set pfl} = f(l) and Kk ; 1s

pon

(k) ()
) .

8. LEvaluale w Mg
9. If E(R)I.E(k) < € then stop.
) i(k)T-f(k)
10. Set a =
B(k)T_A_E(k)
11. Update the unknowns E(k+1) = E(k) + u(k)g(kJ .
ana p(R*1) | 00 _ 0k ()
(k)T (k)
T o
12. Set B(k)

- f{k—l)T‘E(k—l)

(k+1) _ f(k+l) 2 (k)-p(k)

13. Update the search direction p B

14, If E(k+1)T E(k+l)

< ¢ then stop.

15. Set k = k+l, go to Step 8.

Note than an upper bound on the number of iterations is also imposed as a termination

criteria.

On the parallel processor we need to evaluate the following products:

S
ii) ET.A.E
iii) A.p
. T
iv) p'p.

Each of these can be subdivided into contributions from separate elements performed

in parallel on separate processors.

The nonlinear conjugate gradient algorithm

The basic nonlinear conjugate gradient due to Fletcher and Reeves [8]is described

(1)

b?i?w. Initially we guess values for uy i=1,2, . N and then evaluate V?F at
u .
1 Set k = 1.
2 Evaluate VF(k).
85 If VF(k)T.VF(k) < e then stop.
4 If k=1
then set E(k) = - VF(k)
else set B(k) = vFEi):igF(kzk)
VF «¥YE
ana) o o gplk) | g0K) (k1)
5. Evaluate a as u(k) = arg min (F + ap).
6. Update the unknown E(k+l) = u(k) + ;(k)p(k).

7. Set k = k+1.
8. If k < k max then go to Step 2

elee slLop,

0ow

E i

i) VF)
1i) p)
1) F.p)

)

¥
iv) VFL.VF

kY
\

ase.

frest problems and results

e considered equation (5.1);

zero.
3

zfoint sources

‘The boundary conditions were imposed by fixing the

‘boundary to 1.0 and the corresponding value of the

Note that in our nonlinear algorithm the values of

comes into 4 sets of equations, its overall effect

Conductivities

Four different conductivity distributions were use

PROBLEM 1. The model problem with Kx and Ky equal
100 times greater than Ky.
PROBLEM 3.
iof smaller regions.

“"PROBLEM 4.

PROBLEM 5. For the nonlinear p.d.e. equation (5.2)

gain in this case we need to calculate the following:

- d thesélcan be computed in parallel in a similar manner to that used for the linen

e main problems come from Stone [11] who ran an n x n problem for n = 11,21,31.

in this eqguation Q is a point source;
%me boundary T is fixed and the corresponding component of g set to zero; at the
%emaining points on the boundary the solution should set the normal component of VI L
'(-

The distribution of Kx and Ky will be described later.

%me problems all had three point sources and two point sinks and these were located

fas below:
%br 11 x 11 at (2,2), (2,10), (8,2), (6&,6), (10,
for 21 x 21 at (2,2), (2,20), (14,3), (10,11), (20,
SFor 31 x 31 at (3,3), (3,27), (23,4), (14,15), (27,
For 41 x 41 at (6,6), (6,36), (28,6), (20,20), (36,
64 x 64 at (9,9), (9,60), (54,9), (34,34}, (60,
1.0 0.5 0.6 -1.83 -0.

éindependently in the x and y directions and located at the centre of an element.

‘ PROBLEM 2. The generalised model problem with Kx and Ky both constant, but with K
The heterogeneocus test problem, here-~=the region is divided into a numbe

This was the same as for 3, except that in one of the regions, where I

and K had been set to 1.0, the conductivities came via random numbers.
J

at one point on

10)

20)

27)

36) and

60) with values of

27 respectively.

temperature at one point on the

gradient to 0.0C.

@ were divided by 4 since each

must be Q@ and not 4Q.
They were speciliof

in the tests.

to unity over the entire region.

the least squares formulation wn

win

Ailopted, The variables wers augmented by introdu Lrng

i au

now b

ox' ay
Anil the objective function I minimised over the values of u, a and b at the nodes
Where 1 is given by

fr au au da ab
I = =SB = oy = _ 2
JJ(a BxJ + (b au) + (ax + 3y Rua)?® gv,

Humerical Results

Ihe problems were run on the DAP using the two codes, linear and nonlinear, and for
Lamparison purposes the correspohding sequential versions were run on the Hatfielg
Filytechnic DEC 1091. The linear results are shown graphically in Figure Bl where
Ihe grid size is on the x-axis and the LOG of time on the y-axis. (Note that the
LOU of time had to be used because of the large range of times obtained - particularly
Ior the sequential cases). In all but a few cases (which have been indicated) the
tilerance for termination was 1E~6. A suitable upperbound to the interations was

B8l at 2% no, of points.

Il In apparent from the graph that the parallel implementations are considerably fas-
8" than the seguential ones, Problem 1 was taken as far as a 64 x 64 problem for the
Parnllel case just to prove that it was possible within a reasonable time but this

tuuld not be loaded on our sequential computer. The curves/lines for the parallel
{HRe increase only slightly in comparison with the sequential runs whose times soon

Waiome large as the number of unknowns is increased or as the ill—conditioning gets

WEirse ,

e results of the nonlinear problem are shown in Figure B2 which emphasise even more
the benefits in time that can be obtained by solving the problem cn the DAP rather than

His mequential machine. It will be noted that the sequential runs were SO expensive

sl the comparison tests had to be discontinued at a dimension where the problem was
Aall enough only to require an eighth of the DAP.
l;uH'HlHiQEE

e two parallel implementations have exhibited the fact that the solution of p.d.e.'s

Wi this method of approach is very suitable to the SIMD class of machines and in
Aflloular the DAP.

st certainly one of the main advantages of the DAP in this case was the fact that

W& jirocessors are connected to their nearest four neighbours, via row and column data
lliways, and thélpowerful shift indexing facilities make gocd use of this. Thus we

SVE W mimple but an extremely effective means of communicating with other nodes and
tehibouring elements.

'8 ety can be compared to the two sequential programs which need to keep, for

W Blement, a separate record of the four neighbouring (local) nodes, which must be

HE ANd Lhen 1hd&ssd gprpraot Iy Thim

L

oan overhead for the sequential case, not

911

mention the fact that it is a complication in the writing and checking of the code

:;ich is not present in the algorithms. From the DAP's point of vtew it makes no

lgroblem) or 3,969 element matrices (a 64 x 64 problem) as either most or none of the

!jbcessors will be switched off (masked out).
; t
fhe algérithms that were employed for these solutions are basic with no sophisticated

jproveménts though many are known. In theory we should terminate with the correct

|
E
4
i
?
i

lution in at most N iterations (where N is the number of unknowns) but this assumes

S

je use exact arithmetic with no rounding errors, which in practice is not the case.

fmprovements to the basic algorithms can be made, see for instance Powell [10].

ﬂmer major improvements are wellknown such as preconditioning, the multigrid approach,

fc.. where the system of equations

§s transformed into a new system
A - g
j'ich will have a much smaller cendition number in order to speed up the convergence.

=
#farallel implementation of such a method will be the basis of additional work.

Multiextremal global optimisation

this section we begin with a brief introduction in which we define the global opti-
sation problem, give a classification of methods and briefly describe the nature of

®ne class of methods.

dntroduction
ile global optimisation problem is posed as follows:

{}nsider the problem
n

min f(x}), SCR
here S = {x: U, < x. < Loy B 3 08 awwe W)
= =" =3
We shall assume that the objective function f(g) is nonconvex and possesses more than

®ne local minimum. The problem is to locate that local minimum point x* with the
£ =
Aeast function value. For some problems we have more than one local minimum that is

=

global .

éhe methods for solving global optimisation problems are classified as deterministic
ior probabilistic. It is generally accepted that deterministic methods can only be

#@rplied to a restricted subset of objective functions f(x), whereas more general state-
fﬁnts can sometimes be made for a probabilistic method. Hence for a general problem

@Probabilistic methods are often preferred. In this paper we will only consider

:ﬁethods belonging to that classification. Probabilistic methods rely on “the follow-

?ng result:

iTSSume that a finite number of points chosen at random are distributed uniformly over

‘8 finite region S. If A is a subset of S with a measure m such that -

02

m(A)
plEy 2 >l

und p(A,N) is the probability that at least one point of a sequence of N random points
lies in A then
lim p(A,N)

N+oo '

A description of some of the probabilistic methods can be found in Dixon & Szegt [16].

Although many alternative probabilistic methods have been suggested none could claim
to be the 'best' as no agreed measure of performance is available. In practice very
Kw real multiextremal nonconvex global optimisation problems have been solved. The
ason for this is the high 'computational costs' involved when implementing the prob-
mnbilistic algorithm on a sequential system. One of the main contributing factors
for this is the time of repeated function evaluations, the more complicated the nature
of the objective function the more these costs increase. The clustering type of
probabilistic algorithms are among the most successful and these generally consist of

three phases:

n) selection of N trial points chosen at random from the region of interest and the
computation of the associated function values,

i) local search phase. A few iterations of a local minimisation routine are run

from each of the trial points. This is done to push the points near to a local
minimum,

¢) clustering phase. Find clusters amongst the resulting points using clustering

analysis techniques and to return to phase b with a reduced number of peints.

The choice of N, the number of trial peints, is quite critical. If it is too small,
{hen the exploration of the region of interest will be insufficient and possible opti-
mum locations may be overlocked. So the greater the value of N the more likelihood

there is of the algorithm locating a global minimum. Using a parallel system, say,
MIMD or SIMD in nature, we could chocse large N (and perform functicn evaluations in

parallel), thus increasing the probability of the algorithm lecating a global minimum.

A number of sequential probabilistic algorithms have been suggested, e.g. Price [17].
Torn (18] and Boender [19]. We will consider the Controlled Random search algorithm
of Price, intended for a mini-computer, and describe how we implemented the parallel
varsions of it on an SIMD arréy system and an MIMD system. The exploitation of para-
lelism that we will be describing will be at the level of designing parallel algor-
Lhms . when designing a parallel algorithm we shall bear in mind the target archi-
tocture. First we will summarise the sequential algorithm and present the numerical
iepults for ten test problems.
lis mequential Price's CRS algorithm consists of the following steps:

{up 1: A sample of N points from the domain of an objective function is taken. The

points are uniformly distributed over the feasible region, S. We have cho-

014

sen N = 10(n + 1). Evaluate the function at each point.
Choose the point M which has the greatest function value, M (worst point).

Choose the point L which has the least function value, f1 (best paint).

Choose n distinot points, R2, R3, s Rn+l’ at random from the set of N
points. Let Rl = L. Determine G, the centroid of the first n points
Rl’ Rz, ‘s Rn. The next trial point is defined to be

= 2G - Rn+l'

External reflection of Rn+l about G (pictorial illustration below for n = 2)

We

1f the trial point P is within the feasible region S then proceed to Step 5;

3 "otherwise repeat Step 3.
Determine fp, the function value at the point P. If fp < fM, accept point

P and proceed to Step 6; otherwise repeat Step 3.

Replace the worst point M in the set of N points, by point E.
otherwise repeat from Step 2.

If termination criterion is satsfied, stop;

The termination criteria we have used is:

at the iFh iteration

i = < = <
if |fi fi_1L € and |f, fi_2E €

i1 then stop,

where € is some tolerance.

‘Numerical Results
The seguential algorithm was coded in FORTRAN and run on the Hatfield Polytechnic DEC
Computational results

%
:
:

1091, The test problems chosen are described in Appendix C.

 of tests on the standard test functions are collected in Table Cl. The CRS procedure

ghas the advantage of being simpler and reguires less computer storage than the more

sophisticated clustering algorithm.

Parallel (SIMD) Controlled Random search algorithm
C A parallel

onsider the interaction of the CRS algorithm with the SIMD ICL DAP.

version of the CRS algorithm suggested by Dixon and Patel [15] and modified by Ducks-

“ bury is shown in Figure 4.3.

Numerical Results
% The results of this parallel algorithm are displayed in Table C2 (sequential against

!
§
g
¢
;
£

Tt is observed that the parallel algorithm performed better than the
The

£ parallel).
sequential algorithm, in terms of function evaluation and performance ratio.

performance ratio ranges from 3.2 to 68. The lower ratio igs for the test problem

i

JF

b

Choose gN points at randcm
and evaluate function values Parallel

N = 4098

Reject largest n on each

q = 3n,

PrOCEESGE Parallel
Select N points which have
the largest function values Parallel

(one from each processor)

Find minimum point fL 2n parallel stapces

]

Cheoose n matrices at random
from the set 2n

l Determine matrices G and P 1 Parallel
Replace Mi's by new Pi‘s and
fM's by new fp.'s if points Parallel
p i
; €S and fPi < fy

I

Termination

Stop

Figure 4.3

where there is only one global minima and the larger ratio is for the problems which
possess multiple global minima. The algorithm is only suitable for small values of
n, in the range 2 < n < 5, This restriction was due to shortage of store on the DAP
at the time these tests were undertaken. The store on the DAP has subsequently been

increased.

'arallel (MIMD) Contrclled Random Search algorithm

A piar . i
\ parallel version of the Controlled Random Search algorithm for inplementation on the

il process

ior NEPTUNE system consists of the following steps:

Wisy STRIRILL | i
B i Nopodnts ot random in the region § to be mearched, where N 10(n+1)

uin

fvaluate the function at each point. This is a sequential step, but it

can be parallelised.A set of N points and their associated f
accessible to all the processors.

unction values

are stored in the global memory, i.e.
i(i=0,1,2,3) then executes the following:

\Erocessor
= worst point, Mi’ with function value fM

itep 2: Processor i chooses (4 :4-1)

f: = max (fj, o - SR

o
£f. =max (f,, j=1,2, ... N, J # M, T= 0,1, -.. (k=1)).

M

Choose the point L which has the least function value, fL {best point)

fﬁ = min (fj' j=1,2, ... N).

Gteps 3 and 4: Generate a new point, P, and check for its feasibility, as in the

sequential algorithm.

the function value at the point P. if fp < fM accept point

'step 5: Determine fp,
otherwise repeat Step 3. *

in the set of N points stored in the

P and proceed to Step 6;

.atep 6: Replace the (i +l)St worst point Mi

global memory by the new point P.

tep 7. Terminate or repeat from Step 2, as in the sequential algerithm.

ach of the proces-

g

he content of the global memory is continually being modified by e

ors and there 1is no communication between the processors. Hence the process is an

synchronous process.

umerical Results

e parallel algorithm was ru
The test problems chosen are described in Appendix C.

n on the four processor NEPTUNE system at Loughborough

niversity of Technology.

1 algorithm was first run on one processor (proces—

or each test problem, the paralle
0,13

(different combinations of the processors, i.e.

or 0), then on two processors
finally on all four

,2; 0,3), then on three processors (05425 1051585 10,2,:3) jand

!‘OCeSSOI‘E

g

A number of runs for each test problem were carried out. The numeri-

;Cal results are displayed in Table C3. The performance of the parallel algorithm,
ln terms of speed-up and number of function evaluations, improves as we increase the

Anumber of processors. We observe that the algorithm converges faster (i.e. less

unction evaluations) as we increase the number of processors.

CONCLUSIONS

“In this paper we have presented results indicating that in 3 very separate circum-

Stances the use of parallel processing systems can greatly affect the computer time

involved in solving optimisation problems. This subject appears a very fruitful

“area for future research.

6. ACKNOWLEDGEMENTS

under two research grants from the BERE, now

-ll.'lllll...-

£ 'The work in this report was carried out

GR/B/1794/5 and GR/B/4665/5.

916

The DAP Support Unit at Queen Mary College, University

of London are gratefully acknowledged for their permission to use the DAP and Lough-

borough University

for their permission to use the NEPTUNE system.

REFERENCES

1] Rodrigue, G and Greenbaum, A, The incomplete Cholesky Conjugate Gradient methed
for the STAR, Lawrence Livermore Lab. Report, UCID-17574, 1977.

2] Rodrigue, G, Dubois, P F and Greenbaunm, A, Approx. the inverse of a matrix for
use in iterative algorithms on & vector processor, Computing 22, PP 257-268,
1979.

3] Schreiber, R S, The implementation of the conjugate gradient method on a vector
computer, Stanford University, CA 94305, 1981.

4] Sargan, J D, Chong, Y Y and Smith, K A, Nonlinear Econometric Modelling on a
Parallel Processor, DAP Support Unit, Queen Mary College, London, October 1981.

5] Sauber, W, A data flow architecture implementation, Technical Report, Texas
Instruments Incorporated, Austin, Texas, 1880C.

6} Brown, A H O, The development of computer optimisation procedures for use in
aero engine design, in 'Optimisation in Action,’ ed. L C W Dixon, Academic Press,
1976.

7] Dixon, L C W, Global optima without convexity, in 'Design and Implementation of
Optimisation Software,’ 1878.

8] Fletcher, R and Reeves, C M, Function minimisation by conjugate gradients,
Computer Journal, Vol.7, 1964,

g] Hestenes, M and Stiefel, E, Methods of conjugate gradients for solving linear
systems, Journal Res.Nat.Bu.Standards, No.49, 1952.

10] powell, M J D, Restart procedures for the conjugate gradient method, Math. Pro-
gramming, Vol.12, pp 221-154, 1975.

11] Stone, H L, Iterative solution of implicit approximations of multi-dimensional
PDE's, SIAM Num.Anal., Vol.5, No.3, September 1968.

12] NAG Manuals (Mark 8).

13] OPTIMA Manual, Numerical Optimisation Centre, The Hatfield Polytechnic, Issue
No.4, 1982.

14] Harwell Subroutine Library, 1881.

15] Dixon, L C W and Patel, K D, The place of parallel computation in numerical op-
timisation II: The multiextremal global optimisation problem, TR117, Numerical
Optimisation Centre, Hatfield Polytechnic, 1981.

16] Dixon, L C W and Szegh, G P, The global optimisation problem: An introduction,

17

pp 1-15, in 'Towards Global Optimisation 2," eds. Dixon and Szegh, North Holland

Publishing Company, 1978.

A new version of the controlled random search procedure for global
TR, Enginerring Dept., University of Leicester, 1881.

WL,

opltimination,

Price,

N

16|

19]

20]

?21]

917
Thrn, A A, A search clustering approach to global optimisatien, in 'Towards
Dixon and Szegh, North Holland, 1978.

Global Optimisation 2,' eds.

Boender, C G E, et al, A stochastic method for global optimisation, Math. Pro

gramming, 1983.

H, Newman 1 & and Woodward, M C, A guide to using the

Evans, D J, Barlow, R
Dept. of Computer Studies, Loughborough

NEPTUNE parallel processing system,
University of Technology, 1982.
TP 6755, TP 6918, TP 6920, ICL, Putney,

DAP Manuals, Technical Publications,

London SW15.

oy 6T 7O pSE 129 €921 6E°VETE 60°96TL oyIysumds-ucu

- - e d i 4 a
9T 9 18" LET LTt 62% LZT191T 98- IBTF aa z't'z'n
:Lv Xodg
zs v 89°8L 16T 14 597982 1€ °v092 5713 sumAs—uou

- - e e 4

Lz A 95" LE £y VL 81799 S .wﬁ ¥9/1'%9/T)
ojaryswouobriy
L8 SE 9071l PIT 81¢ 8z 1 L6 Pl O F I3 UWAS-UOU

. . as e ddy_ 4
6% 44 167§ ZvT 86C 9T €S LyTlT Hh £'o’T-"¢)
TI=2M0d
€01 6 9E*TT 6vZ 96¥ g9L°08 86 0P T o I3ouwuAs-uou
ZL LZ 9€°8 T6T £89 SE€' €01 L6°SPT Bn.....im.alu
8¥ 6T L9°s (o) ¥4 284 11°2L €T VST a.ﬁ.....H.ou
YO0IqUIS OY
6 4 81T L Z1 otz 09°9T1 oI} BumAs-uou

i . . ssaedyrd
6 £ €T T S 8 08°T 00°ST .HH T'0)
oTaexpend
SLER WLl =
TpRID B STTeD sTTeD e ﬂo_x
*3oung uoT}e Elhaain “peis °joung vosydey Jutoq BuRIeRS
3O °"ON =X931 0dd 3o "oN jo -oN awll Ndd e OTASUNg

JusTPRIH gaebnfuon oFI10W a1geTIRA

=
mﬂ«.uﬁﬁbww uy mEﬁUu 539pod Hﬁﬁﬁﬁ—)ﬁ.wm Sy} I03 Samt3} DCHMW&UDH&
v @19%L
0 A e P A AR I P Bt S il s - R 3 o mammn oot 1 = BB ¢ ¢ cr ST S e I T ML s et + vt kit 3 fha stk ol aiRi R ;..tlu
-
4
e o
— pury
— I
| —
Bl o.
i Bl
x LY
[aV] u
1 +
o —_—
i el
- i e 2 .
.. <r | ~ (0]
) — o, — o
0 ® — fhur]
a3 + @ Rar] +
® Q
0] ~ I ~— =
153 L 1) =
b} - ~ [¢] G
3 N e &}
* 2 o
1] . — >
= E ~] ey - e
= [0} o~ 3] m L
-— — v o~ o Q0
Eel I [1 + @
[5) el - — -
I o ki (=) =5 L
a, b = b — o
1 — © =
- —f T3]) — o
w et = sl
[} . +] A ~
+ o + 5] +
— - _— (4]
— 3 o — el] E
) I i o + e . E
=] - el I - < — -
(] o o - L — — 9]
= ® S < b | Gl
w I bl s iz — w
= — 1 o R o & << 1]] =
] — — < = (o] o [Tl B Ral [
= ~ ® i — o “© o
- + — + e Hal]
o =} | 1 o . 2 Eal . 0]
1 = ~ o - (4] x . 3] - e i E
< Q - ot o [™ (] a s 1] “H Il Q .
[te} - o + " i | = s 3 + R s —
+ a3 Q — o < s (o] b G i o
@ O j=} =} o o = < R — o e - o
e o O = (%) ol ~— = + (@] " - Q ©0 m G4 G o
- =) — G4 — £ — — Q P e — - — el — [=8
G 4 Q o =4 1} o
~ 20 =4 o — — = — el + — - o
Lsh1} Q o L} Q (3}) p w0 n G o n [} g 1} el | o — 3
e e M oA s}) KA G A + Lo B - E O WA ol o
o + 1N = 1_0 [s] o L G
< Ed ®] Fel ! — " =] — [= "
(e} o =} ~ e Q 1} n +
> —~ o —~| [- (] = g I of — 0
= —~] =] i z ®1 % =1 Bl ®1 i)) 5
0 o] jal ~— o ~— Q — o — — ~ — el - e
=] (=3 G o G- a. G 0 Lol + B G < o G
o < ()
o. WH — — —_ —_— — SR, <
< Es o Fel Q el Q =

uo3ENTEAS UOFIDUNF U MOTFIDNO ¥

oyrysumis-ucd

g
LS .H.n.....m,.h.m.: (W) XOHs
wAs—uou
OLLBLE"ET R wt] {
amouobTX
STTLO°TT gl 'y9/T) DI} 2WOUODTAL
* oyx3eumis-uou
ZLBTPSTE 08 5
6F6BEE"S BA £'0'T-"€) TTanod
L s i g
= £LETELTE Bn o =) ; .
5 89709 € .wa...l.ﬂ.o..ﬂ.ow 3ooAqUBsS ol
i uauuw@mumo: atyeapend
2€G6L°0 .H_n 1'0) T

x
(0)
quyod BUT3IAEIS

0

(*s03S)
suyy} d¥d

(& NOTSHAA | udxeas a-T. 103 sawjl buyssa00id dua

vy aTdeL

BB st i i s K TR AR 1 S AT et Fan h

[
12807 B80S GZT1 0 o pryauuds-uou
£229°25V 8T ‘50 sﬁ.....NJ.N.i (W) xod
TE6EE°ET T 100°0 100°0 G0 2 T}awUAsS-uoU
ZOTLP9 6 Z1 1000 10070 0°'1 Ba.....vm\: oyxyswounbraL
9LL8YT T € 100070 10°0 o°'T o1xryoumds—-uou
9TO9KL" T 5 T000°0 10°0 0" 1 BA.....m.o.T.D Tremod
19%Z¥8°6 9z T00°0 T00°0 0T 5113 owuls—uou
Ly086Z°8 oz T00°0 000 5 0 HT.Lo.H.N.TW
o
& 66TZES™S vl TCO O 100°0 5 0 &A....M.OJ.Q yooaquasod
$8zg08°0 v 1000°0 10 0T o7r3suuAs-uou
$296168°0 4 1000°0 10 0°1 BH.-...H.OU oT3RIpRENd
(-s08s) ...nm..aH o Ty .
swf3 vd 2 TeTaTut (0) voT30UNg
qutod Bujliels

N4 NoIsuaa] yoaeas ,a-T. 103 SPWl} puyssasoad avd

Cv o eTqeL

00T626°TSE o1 100°0 10°0 57900 o1x3eumuks-uou
COT0Z8" LOT 4 100°0 10°0 Y Ade] ET.ZN..H.NTS (W) xod
08%€£25°ST ST 100°0 TO0"0 S0 oFIIBUUAS-UOU
0628%0°0T o1 100°0 100°0 S*0 .H.A ma et o) oTI33WoUChTIL
0ZSPoOT € L T00°0 1000 o1 oFa3eunds-uou
OZEPST € L 100°0 1000 0°1 Fn....m.o..ﬂn.mu TT=M0d
0699887 C1 se 1000 1000 50 SFx3sumAs-uou
. Z6S06Z°C 14 100°0 T100°0 o°T BA....D.A.N.AL
- poLZBEZ € 9 T00°0 T00°0 01 BH....~H.ou Hooaquasoy
9£96¥6°0 Z TC0"0 T°'0 0°1 DF a3 oumA 5-uoU
89689670 4 T100°0 T°0 01 .nA......ﬁ\Du or3RIpPEND
- ..H et
(-s03s) R " % - o * uojzoung
E] Ry
wr3 dvd TRTATUT aurod BufaIeRs
(& on.mmmb_ yoxeas ,d~-7, IoF sawfl bBuyssadoxd gyq
GV @Tqel
.I\.;:.\\
Pl
BT SN SRRy T O A S 23
6TLE"¢20E 2] T00*0 10°0 G20 a1myeuwds-uou
6986 "O€T S T00°0 1070 SZ°0 BA...‘N.H.NJ“. (W) xodg
ZL9LS" LT LT T00°0 TOO"0 S 0 oy auuAs-uou
98LO0T"TT TT TOO 0O T00°0 S0 ,H_H. B9/ T) afx3awouobyay,
¥99005° Y £ Toco 0 1070 0T oy x3auuks—uou
9596261 r TOOO "0 T0°0 [ORa § EA....M.O.HI.: T13m0g
0ZL929°9¢ TL 10070 100°0 el OFa3 suwis-uou
e vepag-g TT 100°0 1000 50 .Hﬁ.-..O..H~N.HIU
& 16TS98% *9 ZT 1000 100°0 -0 ,H.ﬁ...lﬁ,ou yooaquasoy
FZZ9%6 -0 4 10000 1°0 (o3 orr3awuls-uou
8915886 °0 Z. TO0O "0 T-0 o°1 ba..... ‘1'0) oT3RIDEND
(-soas) . T, m
Swry dyva 9 = v Tef3TuUY (0) uoy3ouUng
’ jured bupjzaens

[¥ NOISYdA] yoawas ,q-z, xoJ saufy buyssesoxd gyq

vy @TqelL

TT | LTI 70 6°6 6°9T £°9 z°2t 9" SE A A oTx3sumAs-uoU
£ 1T _ T £°0 801 6°8 [4 L°8E 6°1€ 876 Bn.....N.HU (W) xod
1°6 SV 6°6 T €EE £°9T S 1 8 00¢ z°8r1 [ART) ! 2 T3 swwdAs - uou
L"¢ ¥ E 6°¢t Ly 6°S 6°9 - . - - BH.....vw\Hv oTmswoucbraL
86 | 7L 678 S°1¢ ST Lz T°t£€ £°0L 6°68 1°80T1 S Tx3sumds-uou
£~z i ¥ € T 12 9°LZ ¥ "0E 9 vb £°8S b9 Bn...‘m‘c.au.mv TTamod
¥°0 | £°0 1 6°C z'z z°8 0°g 9°¢ £ 9T ofIyswmAs—uou
£~ A | o' T 6°0¢ 9°LT S°¢l s°6c 6°bZ L°LT BA....O.A.N.auu
£E°T 670 o°1T 8°91 111 O €1 0°9¢ 8 fzZ 6°LC BA....H.OH }ooaquasod
m (670 | 271 S T LA ZoE 9z L*ET Z°LT L™0T o fa3 ouuwks-uou
: 66°0 Z°T PoT 1 a1 0z AA 2°61 B8°9T Bﬁ.....a.ov OT3eIpENd
a-y | a-z a-1 a-v a-z a-1 a-y a-z a-1 e
(0) uoT3IoUNg
_ dva dvad dvd jutod Butiaeas
—ustpeio-a3ebnfuo) DT eH-aTqeTIeA uosydey-uojman

Jva =uy3 Buysn amry bHuysssooad
we3SAS ﬂmaucmsmmm e buysn awyy bursssdoxd

= ‘of3ex ,dn-psads, suyisq

[¥ NOISHEA | juswainseadu B0URWLIOJIAJ

LY ®|1qeL

62S6°€CE £T T0O*0 10°0 5Z1°0 2y13sumis~uou
3 99%6° LOT |- 000 T10°0 S°0 kﬁ.....m.av (W) xed
| 1615978 ¢ 100°0 100°0 50 o7 130umAS-uou
O£6866° €T zT 100°0" 10070 o1 LT/) ofajawouchyaL
_ F860Z6° T £ 1000°0 T0°0 o1 oya3suuis-—uou
| zigzs'e v T000°0 1070 0" 1 an....~ﬁ.o\ﬂ1.mv Tresod
oLLTIC"8C v 10070 1000 50 OFA3BumIAS—uoU
Z066%6° Y L 10070 T00°0 0°T Hﬁ....o.a.m.ﬁ|v
M °8ZeLZ Y 9 T00°0 T00*0 0°1 HA.....H,OU N20I1qUBSOY
08ZOTZ T z 100070 1°0 0°1 a7x3suuAS—uou
88kLEC" T 4 1000°0 1°0 01 _H_ﬁ....;.ov oyaeapend
(soes) *I93I y Ty ﬁow uoy3oung
= E}
1 TeTITUT jujod bugiaels

ysreass ,q-p, 10y samyl buyssasoid dJug

9y |1qedL

Td 8anB14

A71]

| S
0L €9 95 6b

dva 8y3 bursn awyy Hurssasoxd

wa3sds Terjuenbss w buysn ouwyy Buyssenoid ~

[8 NOISH3A] jusasrnsesw |PoURWIOFIBG

8V 2IqeL

‘oTjex ,dn-pasads, auygaqg

0
. FaN
18T ININD3S
137119484
1
- =1
= —
P AL
m
w
m
L ™
c @
=
(-
)
- JZIS aI¥9 A (IWIL) 9071
=
8 €
£ 0T9P7
<
T - L°ZT ~ 9°8¢ - O 138umAs- uou
£°T & 8701 = 8°8€ = _ﬁﬁ.....m.i (H) xog
1°s 6°S S°BT | A ¥4 87491 9°vetr DT I3 auwks—-uou
Lt vrE 9%a 0°9 - - &H....~vm\av SFr3awoucbyay,
S € '€ O°fT g 14 Ley 1°8€ synsuuls-uou ,
6°T i iza 6°9T 001 L°S¢E L°IZ Ba....m.O.A|.mv T19M04
6°0 8°0 £°9 9°g 60T 86 DA omuAs-uou
9 60 T°S¢ 90T L7 €9 6°9T Bn....O.H~N.HIU
i o 9°1 o-zz 0-oz oLy g°zy LU0 Yooaquesoy
= Zer 5 T z°z L'z S LT b1z o¥13eumAs—uau
€°T S° T 6°T £°C S$°5T 68T Hn....~H~OU dF3expend
a-z a-1 a-z a-T a-g a-T AOUX uoTIouUNg
dva ava dva Jutod Bupjaens
=USTpeIb ajebnluocy OTIjaN @TqeTIes - uosydey-—uojmean II;

LR

l'mhila '} Table (2
wnmullnnl results for the seguential CRY algorithm Numerical results for parallel (S5IMD) CRS algorithm
——
Nuimber of klobal points . LO(na1)
Polerance, ¢ = 0.000001 Sequential Parallel (SIMD)
Function Time(s) fn.evals. Time(s) fn.evals. Performance
t ratio
function No. of xX* f{x*) 1
function , Six Hump Camel-back 0.36 288
11 evaluations (2 globa} minima) 0.81 798 0.093 7 12.5
Goldstein and Price 792 (o, ~1.0) 3.0 1.17 1086 . Note (1)
Branin 744 ' (-3.14163, 12.27467) C.3978¢ Branin P s
410 (3.13630, 2.26562) 0.39820 (3 global minima)
(9.46559, 2.45409) 0.40897 0.97 654 0.118 8 26.8
Hartman's family 1.73 1024 Note (1)
3.17 2038
m=4, n=3 1276 (0.11514, 0.55568, 0.85253) | -3.88278
m=9, n=6 3804 (0.40474, 0.88258, 0.84349, Goldstein and Price | 0.45 481 0.13 8 3.5
0.13724, 0.03849) -3.203186 {1 global minimum)
m=4, n=6 6416 (0 20168, 0.15004 0.476899 3.32237
’ i s B = = Hartman's 0.88 503 0.276 11 3.2
£=0.0000001 0.27515, C.31168, 0.65732) n=3
Shekel's family (1 globzl minimum)
Oy m=5 3996 (4.0, 4.0, 4.0, 4.0} ~10.15320 Shekel
n=4, m=7 287 Note (3)
=4, m= 2 (4.00069, 4.00080, 3.99939, m=5 3,89 2732 0.453 14 8.6
3.99957) -10.40294
=7 . 4 & 4 .
n=4, m=10 3284 (4.00066, 4.00058, 3.99965, " 382 S 0.5 = 6.9
3.99954) -10.53641 m=10 4.31 2567 0.693 14 . 6.2
3 Hump Camel-back 706 (0.00000, 0.00044) 0.00000 11 glotial minisiun)
hubert 2-D e average 0.233 8 68
6 Hump Camel-back 676 (—0.09002, -0.71249) -1.031863 ?1; zll‘obal minima) ;?5;75:!’1 ;;538
(0.089939, 0.71341) -1.03162 Note (2)
. total
Treccani 412 (-0.000&3, ~0.00009) 0.00000 13.8
Note (2)
Notes:
(1) Multiple global minima are identified in one run.
(2) The parallel algorithm picked up 11 minima in one run hence the same 11
minima from the sequential version were used for the comparison (these 11
being picked up in 10 runs).
(3) Located the approximate global minimum.
[e —

Numerical results

932

Table

Cc3

for parallel (MIMD) CRS algorithm

fn.evals. for the best run
functicn Ne. of Speed-up Proc. 0| Proc. 1} Proc. 2| Proc. E;—
Processors range

3 Hump Camel-back 1 432

2 1.21 - 2.45 ‘181 154

3 1.53 - 2.64 180 149 158

4 2.01 - 2.65 185 152 154 159
6 Hump Camel-back 1 434

2 1.2 ~ 1.86 232 212

3 1.80 - 1.99 234 193 212

4 2.05 - 3.21 170 128 128 129
Treccani 1 458

2 1.46 - 1.86 264 262

3 2.11 - 2.27 233 215 196

4 2.48 -~ 2.78 148 138 133 138
Goldstein and Price i 547

2 1.38 - 2.11 303 271

3 1.96 - 2.75 212 182 185

4 2.11 - 3.01 224 189 186 210
Branin 1 475

2 1.27 - 1.69 257 221

3 1.81 - 2.39 205 170 180

4 2.37 - 3.74 139 105 107 120
Shekel's family
n=4, m=5 1 3746

2 1.43 2388 2355

3 15,59, 1818 IR7E 1751

4 2.76 1073 1014 1065 1101
n=9, m=7 1 2932

2 1581 1962 1969

3 1.83 1547 1546 1542

4 2.23 1290 1259 1234 1286
n=4, m=10 % 2836

2 1.45 1941 1901

3 1.82 1602 1611 1609

4 2.41 1170 1146 1191 1183
Hartman's family
m=4, n=3 1 1022

2 1.29 - 1.83 557 516

3 2.15 - 2.49 389 368 371

4 2.98 - 3.80 271 238 253 244

il

m=4, n=6 1 3348

2 - =

3 2.17 - 2.37 1370 1325 1369

4 2.39 - 2.91 1154 1085 1116 1141

