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ABSTRACT.

This work is based upon an algorithm which uses
a third order Hidden Markov Mesh Random Field
(HMMRF) for the segmentation of images, the al-
gorithm was described initially by Devijver (1), (2).
The main emphasis of this paper is to illustrate two
important uses of the algorithm. Firstly, how the
basic algorithm can be used to segment out urban
and non-urban regions from airborne images. Sea
ondly it will be illustrated how the algorithm can
be enhanced in order to model textures, the result- ,,
ing `texture models ' can then be fused together and
used to segment images which contain several Bro-
datz textures.
Finally an apparently basic but ' very effective
method of improving the performance by imple-
menting the approach onto a multi-transputer array
is described.

INTRODUCTION.

The fundamental idea behind this work is that given
some image, we wish to segment it into a number
of homogenous regions. The grouping of the pixels
in the image into these regions is based upon local
properties and neighbourhood relationships. It is
these neighbourhood relationships (that will be re-
ferred to as `contextual information) that are en-
coded into a set of transitional probabilities in the
Markov model.
The basic algorithm 1 has essentially two stages
namely the labelling stage and the learning stage.
The former is concerned with the modelling of the
image (the segmentation of the image into homoge-
nous regions ie. the assignment of an optimum label
to each image pixel) whilst the latter is concerned
with the parameter estimation problem (ie. taking
the current optimum labelling and using it to im-
prove the model parameters). The algorithm pro-
cesses an image pixel by pixel in a raster manner
and has the advantage in that the learning stage is
unsupervised and the only essential parameter re-
quired to be entered by the user is the number of
states that are required in the model.

'limited space prevents a complete description of the
mathematics of both the algorithm and its derivation, for
those interested refer to (1) and (2).

DEFINITION OF A 3rd ORDER MMRF.

Firstly, let the image be M x N in size and then
XM,N denotes a set of feature vectors X,,, , ,,. In the
simplest case these feature vectors will simply be the
gray level intensity. Let AM,N denote a set of labels
a,,, , ,,, where a label will define the class to which a
particular pixel of the image belongs.

P(am,n/{a k,ll k < m or 1 < n}) =

P \
)tm,n / A7n-1,n-1 A m-1,n

for all points (m,n) such that 1 < m < M and
1 < n < N, with boundary conditions existing along
the first row and column.
The MMRF is said to be 3rd order due to the
fact that A m,,, has a dependency 2 upon its three
neighbouring labels, namely Am_1,7,_1, im-l,n and

The model is assumed throughout to be spatially
homogeneous, meaning that we can assume that
the transitional probabilities are totally indepen-
dent from the position in the image. This now
allows us to write Pq/rst as an abbreviation of
P (am,n = q/Am _ i,n = ri

	

si

	

t)
where q, r, s and t are contained within the state-
space of the model. This is read as the probability
of label q being chosen given the three neighbouring
labels r, s and t.

THE ALGORITHM.

In the initial stages of the algorithm a model is cre-
ated by fitting a set of Gaussian distributions (one
per state, denoted by p q (X)) to the histogram of
the image. The model also consists of an initial set
of transitional probabilities which are defined under
the assumption that any two neighbouring pixels in
the image are more likely to have values close to each
other than at either end of the gray level spectrum.
The labelling stage is then a 2-dimensional set of
recurrence relations described in (1) and (2) which
uses the information contained in pq (X) together
with the set of transitional probabilities Pgir,s,t in
order to cluster the image pixels into a set of ho-
mogenous regions.

2In a second order MMRF the dependency of am,n would
exist with the two neighbours Am _i ,,,. and

To appear
`TEE eh Int. Conf. Image Processing and its applications', Maastricht, The Netherlands, 7-9 April 1992.



r

The learning stage is based upon a class of tech-
niques which .are known as decision directed. The
decision directed re-estimation technique effectively
transforms the updating formula into a set of rela-
tively simple counting formula, where IN is taken
to be an indicator function3 . The learning stage can
now be described as follows, the Ps1r ,,t is given by
the following expression.

M

	

N I am-I,n-i = $
Etn=2Ln= 2 t

with special cases existing for the first row and col-
umn. For instance the first column is defined as

N
_ ^n=2I{i= r, An,i = q]
-

En=2 I[an-i,i . r]

and similarly for Psit along the first row. The set
of distributions pq are given by

Em,n l{"m,a ='q]

The above equations are performed for all combina-
tions of q, r, .s and t in the state space. Essentially
therefore it is simply examining every possible 2 x 2
neighbourhood throughout the image and counting
the number of occurences of particular combinations
(or patterns) of labels.

SEGMENTATION OF URBAN REGIONS.

In this instance the images that we are dealing with
are infra-red linescan images taken over the Bed-
fordshire area at a height of 3000 feet. We wished
to look at techniques for the automatic location of
features such as urban regions (also, but not men-
tioned here, the location of road networks). Because
of certain constraints such as being limited to sin-
gle band 8-bit data the approach taken is as follows.
The image is preprocessed to obtain some statisti-
cal information which can be used in an attempt to
classify its content into urban/non-urban. It will be
seen that this statistical classification is noisy and
rather basic, the HMMRF algorithm is then used
to `tidy up' this classification by segmenting it into
homogenous regions.
A mesh of windows is placed over the image, with
each window being typically 16 x 16 pixels in size.
For each window a set of elementary statistics are
computed.

. the number of significant edges.

. the number of significant extrema.

If the expression within the brackets is true then the in-

dicator function returns a 1 otherwise it returns a O.

+ comparison of the histogram using a chi-
squared measure with a set of standard Gaus-
sians.

These are presented in order of their effectiveness
and are coded into a single statistic per window.
Figure 1 illustrates the computed statistics for an
image whilst figure 2 shows the original image with
an outline of the urban region indicated (outline ex-
tracted using a Sobel operator on the segmented im-
age). The results are interpreted as follows, for a
simple 2-state model we have only urban or non-
urban regions, for any model with more than 2 states
we have regions of high probability of being urban
through to regions of low probability of being ur-
ban. The result shown in figure 2 is for a 4-state
model with a single iteration, here only the region
that has the highest probability of being urban is
illustrated4 .
The window size can be reduced to give a finer out-
line of the urban region and a number of iterations
can be used to allow the learning stage to improve
the initial estimate. In practice it has been found
that although the window size can be reduced to
6 x 6 pixels the best results do occur at around
16 x16. This is partly due to the fact that as the win-
dow size is reduced the statistics being used become
less reliable and in addition to this the number of
learning iterations required to remove errors in the
classification increases. One of our main objectives
is for a coarse level processing of an image in the
shortest possible time.

SEGMENTATION OF BRODATZ TEXTURES.

For the segmentation of Brodatz textures (3) the
basic idea is that if it is possible to derive a model
which describes a texture then it should also be pos-
sible to fuse several of these models together. We
should then be able to segment a composite texture
image using the new composite model that has been
obtained.

Combining Markov Models.

The process of combining several models together it-
self makes use of a model which describes the rules
for the merge. Figure 3 illustrates this procedure
for the merging of two 2-state models into one 4-
state model. The notation m3,j denotes the proba-
bility of making a transition from model i to model
j. Whereas previously for a two state model the
process could either remain in the current state or
make a transition into its neighbouring state, now
however a transition can also be made into either of
the states that are in the second model.
Each texture is histogram equalised independently

These regions could be considered as a set of contours .
the use of the word derive in this sense means to train

on a given texture using the learning stage of the algorithm.

Lm=2 n=2 t
m ^N I r am-I,n-i = 8

p4(6) = ^
m,n^xm .a_ , I[Am,n q]



prior to the start of the process to remove the pos-
sibility of detection due to first order statistics. The
method has the property of rapid convergence to a
local maximum and for all of these tests the algo-
rithm was run with a 2-state model for 10 learning
iterations to obtain the set of model parameters pq,
Pq, Pq/ ,., Pq/t and Pq/r,s,t for each texture. Once
these have been obtained the models will then be
merged into a composite model and this can be ap-
plied to a composite image of the two textures.
The transitional probabilities used in model 3 al-
lowed for a 90% probability of staying in the current
texture model and a 10% probability of making a
transition into another texture model.
Figure 4 shows a 4-state segmentation of a com-
posite texture (2 states per texture), first with the
contextual information from the transitional proba-
bilities Pq/r, , t removed and then with the contex-
tual information included. (the resj dts are displayed
such that if a given pixel has a label with a value
corresponding to either of those in model I then it
is displayed as black , otherwise it is displayed as
white).
The segmentation without contextual information is
basically the segmentation using knowledge of the
differences in the histograms of the two textures.
Whilst the segmentation with contextual informa-
tion is where the Markov Model is used to resolve
the ambiguities.

PARALLELIMPLEMENTATION.

The algorithm as it appears in the literature is inher-
ently sequential and hence could impose problems
from the point of view of processor time. However a
version has been experimented with which is based
upon geometric parallelism, here the problem is di-
vided up into smaller ones which can then be run in
parallel.
The image is split into a number of equally sized
subimages each being allocated to a particular pro-
cessor, obviously row 1 of subimage n is now treated
as the first row of an image instead of the nth row,

thus we might naturally expect the resulting seg-
mentation to be of a lower quality s. In practice the
modelling of the distributions pq (X) is done sequen-
tially on the complete image prior to parallelising,
hence each processor has knowledge of the global
distribution of the image and not just its particu-
lar subimage, (if this is not done then the quality
of the segmentation will be unacceptable, it will tend
to have a very banded structure corresponding to the
divisions over the processor boundaries.)
Table 1 shows the approximate processor times re-
quired in seconds. Here the sequential case is on a
VaxStation 3200, whilst the parallel is on 16 T800
transputers. It is important to realise that the urban

6 This approach is not strictly algorithmically valid but is
being considered because of its obvious advantages.

region location takes as input a small set of statistics
instead of a large gray level image.
The statistics are not yet computed in parallel, how-
ever it is likely to be a trivial task as each window
can be computed in parallel (no boundary commu-
nication is required). A processor farm might be
appropriate in this instance.

DISCUSSION.

This work has illustrated that the basic algorithm
proposed by Devijver can be used and readily ex-
tended for a number of cases; firstly, as a standard
(contextual) segmentation tool used on preprocessed
data for the location of urban and non-urban regions
in airborne images, secondly, for the development
and fusion of texture models which can then be used
for the segmentation of images composed of several
textures. (Previous work (5) illustrated how this
approach could be used for the location of driveable
regions for an autonomous land vehicle.)
It has also been shown how the performance can be
greatly improved through the use of parallel archi-
tectures. At present the quality of the segmentation
appears comparable with those from the standard
sequential , case, but the approach will need to be
examined in more detail with reference to this and
also other possible architectur_es and approaches for _
parallelism.
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Figure 2: Located Urban Region.

Figure 3: Combining Markov Models.

Figure 4: Segmentation. (Top row : Use of masks
to extract regions from two Brodatz textures, Middle
row : the composite image, Bottom left : segmen-

' tation without context, Bottom right : segmentation
with context)

Problem Size Seq Par

Urban 496x496
-Statistics 31x31 30 n/a
-HMMRF 31x31 30 2
Brodatz 128x128 180 14

Table 1: Processor Performance


