Numerical
Optimisation

zl Centre

TECHNICAL REPORT NO. 151 SEPTEMBER 1984

FINITE ELEMENT OPTIMISATION ON THE DAP

by

L C W Dixon and P G Ducksbury

The Hatfield Polytechnic

FhoL > kSBRY

THE HATFIELD POLYTECHNIC

NUMERICAL OPTIMISATION CENTRE
TECHNICAL REPORT NO. 151 SEPTEMBER 1984

FINITE ELEMENT OPTIMISATION ON THE DAP

by

L C W Dixon and P G Ducksbury

Abstract

In this paper we present the results that have been obtained on the solution
of linear and nonlinear sets of partial differential equatioﬁs using the
ICL-DAP parallel processing computer. In the approach reported this
problem is fast converted into an optimisation problem and this is then
approximated using the finite element approach. This allows a mapping
between the finite elements in the solution méthod and the parallel
processors of the DAP. In particular the function and gradient of the
optimisation problem can be computed in parallel, the contribution from

one element or node being undertaken by one processor. The optimisatioﬁ
problem is then solved by either the conjugate gradient or truncated

Newton algorithm, in both of which the direction of search can also be
computed utilising the parallelism in the problem formulation. This
method was successfully used to solve a number of different sets of partial
differential equations including the Navier Stokes equations. The methed
enabled far larger problems to be solved than those that could be attempted
on any sequential machine available to us and remarkable "speed-up" factors

are reported on smaller problems.

Presented at the International Conference on Vector and Parallel Processors,
University of Oxford, September 1984.

1. INTRODUCTION

Finite Element Optimisation is an approach that enables general
linear or nonlinear partial differential equations to be formulated and

solved by an iteration process that is guaranteed to terminate in a finite

number of iterations. If the system of partial différential equations is
two-dimensional and steady then the method is readily implementable on

the ICL-Distributed Array Processor. In this paper we will concentrate
on such problems.

In finite element optimisation any set of simultaneous partial
differential equations are first converted into an equivalent optimisation
problem. The-solution of partial differential equations can be converted
into an optimisation problem in two different ways. If the partial
differential equations are self adjoint, then they can be derived from the
minimization of a functional subject to certain boundary conditions by
using the calculus of variations. We will term this the variational
approach and when solving such problems it is natural to revert to the
underlying functional optimisation problem. For non self adjoint systems
such a function does not exist, but it is possible to create a family of
functional integrals whose minima correspond to the solution of the
problem by taking weighted least square integrals of the equations.

In this paper we will first describe the basis of the finite element
optimisation approach by showing how it would be applied to the Navier
Stokes equations. We will then discuss how the method is implemented on

the DAP by first considering a linear variational problem — namely the

solution of the heat conduction equation. Then a simple nonlinear problem
will be formulated by the least squares approach and solved using both
the Fletcher-Reeves conjugate gradient method and the truncated Newton
Method on the distributed array processor and finally DAP solutions of
the Navier Stokes problem will be discussed.

2. THE FINITE ELEMENT/OPTIMISATION APPROACH

Finite element optimisation has been dsveloped as a general method
for solving sets of nonlinear partial differeatial equations. If the
equations are steady and two dimensional it is particularly eaéy to
implement ihe method on the ICL-DAP so the method will be illustrated in
this paper using the two dimensional steady Navier Stokes problem.

Let Oxl, Ox2 be two orthogonal axies in the two dimensional space and

let u be the component of velocity parallel to Ox1 and v the component
parallel to Ox2. Similarly let p be the pressure at any point in the flow
and let R denote the Reynolds number. Then the flow of incompressible

fluid is governed by the equations.

u -QE + Vv gﬁ = - g% + % wu? (1)
a%q 2 1
3
u %% + v 5% = - gB + % we (2)
1 2 %5 ‘
' P
and g—;‘ T = B (3)
i 2

& flow problem is completed by the specification ot an appropriate set of
boundary conditions.

To convert this problem into a first order optimisation problem of
he type normally treated in the calculus of variations we introduce
=dditional variables and use seven field variables

o B s

au U

A =u B= — Bi=1 =
axl axz
(4)
d
1 2
and P=p

In terms of these variables the Navier Stokes equations become seven first

order equations

e1=AB+CD—%(~g-E +—g~g)+—g-o
i 2 1
1 9K oF ap
By AR § DF =& (22 we'lyy. F oo (5)
3 3
2 R Bxl x2 x2

A
4 axl

A
e. = —

5 X
*5
3D

%
6 x1

aD.
...-a——
7 x2

The equivalent optimisation problem can now be posed as

f

™M~
N

min I = w, e, dA (6)

i=1
A
Subject to the appropriate boundary conditions.
The minimisation is carried out over the seven field variables and as the
integrand in (6) only contains first derivatives the theory of the calculus
=f variations provides natural boundary conditions that will be satisfied

=T any point on the boundary where any of the seven fields are not fully

.

specified.

It will be noticed that in this approach the usual distinction
between virichlet and Von Neumann boundary conditions vanishes as the
velocity vector and its derivatives play an identical role in (4) and (8).

It will also be noticed that as the continuity equation is now
simply

B+F=0 (7)
thenlthis equation can be satisfied directly by replacing the variable F
wherever it ocecurs in (5) by the variable -B and then eliminating ey from
the summation in (6). The presence of the continuity equation therefore
essentially simplifies the solution of the Navier Stokes equations by the

'finite element optimisation approach; whilst in most alternative approaches
it is a considerable complication.

The least squares approach illustrated above for the Navier Stokes
equation can obviously be applied in a similar manner to any set of non
self adjoint partial differential equations. The objective function (6)
can be generalised as the solution of a set of partial differential

=guations

w¥ill ocecur at the minimum of

I= eTWedA (8)
for any positive definite operator W(x). However in this paper we will
=ssume the more simple form (6).

To minimise the objective (6) we will first approximate the area of
“nterest by dividing it into a series of elements in an identical way to
52t used in any finited element solution technique. The distributed array
srocessor is most suited for the solution of problems that can be divided

T

into regular rectangular elements and that will be the case in all
problems described in this paper. On such rectangular elements we will
introduce the standard bilinear shape functions wi(x), so the fields (4)

will be approximated by

A=1 ay Qi (x) B =L bi Qi (%) C = ilci ¢i (x)
D= E di Qi (X) E=2Z ei ﬁl {(x) F = L fi Qﬁl (x) (9)
P=Ep, ¢i (x)

Inside any particular rectangular element only four shape functions are
nonzero those corresponding to the nodes at the corners of the element.
Again as in many finite element approaches approximations to the fields
A+P are defined once values are given to the field variables at the nodes.
Once these values are specified the value of I (6) can be calculated, and
so the nodal field values become the optimisation variables. Boundary
conditions of the Dirichlet or Von Neumann type determine the appropriate
nodal field values and these are simply given the correct value and
deleted from the list of optimisation variables. Further details of the
application of finite element optimisation to the Navier Stokes equations
can be found in Singh [4].

For any particular mesh the minimization of I (6) is now a finite
Zimensional optimisation problem. Many codes have been written for the
solution of such problems and the necessary safeguards that need to be
included into such codes to ensure that the iteration terminates in a
sredefined neighbourhood of the solution in a finite number of steps are
@ow well known and can be found in many texts, including Dixon [2]. These
==Teguards have been (Incorporated in all codes based on finite element
srtimisation written for the ICL-DAP computer and in all the codes written

-5 -

for sequential machines used in the comparison study.

It is usual when developing optimisation codes to first test them on

a quadratic function. In this context a quadratic function implies linear

partial differential equations and hence our first example is linear.

3. LINEAR PROBLEMS

The first problem investigated was the linear heat conduction

equation

9 aT 2 aT
axl 1 axl 3x2 2 ax2

This is a self adjoint equation which can be derived from the minimization

of

aT 2 2

I= Kl (3;1) + K2(3§) - 2QT dA (11)
A .

In this particular case it is easy to show that the set of linear simultan-

eous equations derived when the finite element optimisation method is

applied to (11) for a given mesh is identical to the set obtained by apply-

ing Galerkin's method. The solutions will therefore be identical.

&s this example was being considered as the first test problem for a general

=pproach we chose however not to assemble the stiffness matrix A, which is

precisely the Hessian matrix of I. _Instead we chose to rearrange (11) as

i r
I= fdA = r | fdA = & I

el el
A el

ol (12)

ch emphasises the structured nature of the problem and as we are
idering a two dimensional problem the natural mapping of field nodes
the rectangular grid of the distributed array processors was adopted.

unknown value of the field variable at node K was therefore held on

.

processor K and therefore all the information necessary to calculate Iel
was held on four neighbouring processors. Most efficient optimisation
algorithms are based on the function gradient VI, this similarly can be

written

vI = ¢ Vi

ol el

and use may be made of the fact that any variable only contributes to
v Iei in four surrounding elements and that if a conjugate gradient code is
being used then a particular VIel only contributes to the change in those
unknowns at the nodes of that element. This direct relationship between
elements and nodes implies that only immediate neighbour data transfer is
required.

In practise when solving the linear problem (11) it was found advani—
ageous to also store the element Hessian matrixes

v - I v

el el,
use being made of the fact that each element Hessian Vzlel only contained

16 nonzero elements which were stored in the processor at the NW node of the

elements, let us term this matrix Ael'

The Linear Conjugate Gradient algorithm therefore takes the following

form, when solving Au = f.

Evaluate the matrices Ael' [16 values/processor]

(0) and p(0) B 0 (0)

Select u = Epel =u [4 values/processor]

Set f(1) - f(0) _ Ap(0)

(1)T(1)

[parallel multiplication]

if f < tolerance then stop

Set p(l) = ¢ and k = 1 [parallel operation]

mr 0T g P gk St [parallel multiplication

else set q = f(k)Tf(k)/p(k)TA p(k)

o

(7) Update ué§+l) - (k)

=gyl + ep g [parallel operation]
and fé§+l) = féi) - aAp(k) [parallel operation]

(k+1) (k+1) (k) .
(8) Update Pop = £, + B p_y [parallel operation]

where " f(k+1)T f(k+1)/f(k)T f(k)

(9) If f(k+l)T f(k+1)

<€ orK?> Km then stop

ax

else set k = k+1 and goto step 6.

We note that A only occurs in the form Ap and that this product can be

formed element by element

Ap =L A

P
el el el

and stored element by element,

Full details of the above algorithm are given in Dixon, Ducksbury and Singh

[1].

The heat conduction equation was solved for four standard test

problems introduced by Stone [5], In these one temperature was fixed at

]
1 and all the others were optimisation variables, which implies 5% =0 at

all other points of the boundary.

The problem was solved with point sources/sinks of 1.0, 0.5, 0.6,

-1.83, -0.27 located at nodes (9,9), 9,60), (54,9), (34,34) and (60,60)

respectively for a 64 x 64 grid and at relative positions for a smaller

srid.

Various conductivity distributions were employed ranging from

= K2 = 1 to randomly generated conductivities in each subregion. Full

tails are given in Ducksbury [3]

The performance of the algorithm in solving the Kl = K2 = 1 problem
shown in Fig. 1, where the solution time on the ICL DAP is contrasted

-8 -

with that on the DEC 1091. At the mesh of 41 x 41 nodes where only
approximately one third of the processors on the DAP were in use, the speed
up was already 41 compared to the DEC 1091 (14 compared to the ICL 2980).
No larger problem could be run on the DEC 1091, but on the DAP a problem of

size 64 x 64 required approximately 4.24 secs of CPU time and a problem of

size 127 x 127 (i.e. 16129 unknown) required 132.12 secs.

Similar results for one of the illeconditioned problems are shown in
Fig. 2.

To verify the expectation that the introduction of more complex
shapes, albeit shapes built with rectangles, would not effect the DAP
solution time, a complex shape was defined by a logic mask and an other-
wise similar problem was solved in very similar time. This again contrasts
with the effect on CPU times of many other finite element codes, where the
complex boundaries would upset the relationship between local and global

variables and destroy any diagonal band structure being used, thus signi-

ficantly increasing the CPU time.

4. NONLINEAR PROBLEMS

The first nonlinear problem to be studied was given by

3 d
B o8 L0 (10)
2 ax
3x2 1

|
(o}

&n analytical solution is known namely

6x
u =

Rx

=

|

NN

the boundary conditions were set to match this. The finite element/

imisation method introduces three fields A = u, B = 24 ¢ . U

that for a 64 x 64 grid there are 3 x 4096 unknowns before the specific-

- G

ation of the boundary conditions. The resulting minimization problem was
solved by 2 nonlinear optimisation codes, namely a parallel version of the
Fletcher-Reeves conjugate gradient code and a parallel version of the
truncated Newton algorithm. In the truncated Newton algorithm, a set of

linear equations needs to be solved at each iteration and the linear

conjugate gradient code generated for the heat conduction problem was used

for this purpose. The nonlinear conjugate gradient code can be summarised

as follows
(k)
el '’

Calculated I(x(k)
el

(1) Initialise X k=0

) =2 I (x(k)

(2)
el el el

)

(k) (k)
el) z vIel (xel
el

Calculate VI(x

)

It || V1|1§ <e ork?> k o, Then stop

If kK = 0 then set

4
==L V ¥
pel j=l Ielyj
else set p(k+l) = - VI(k) + Bp(k) : o
where B = || VI(k)||; 7 VI(k_l)llg

Call a line search routine to estimate the step length o

LR) ()

Updare el T Tel el
k = k + 1 and goto step 3

we have seen the parallelism of the probleﬁ can be used to compute I and

very efficiently on the parallel processor; the relation between Py

vIel is also very simple as only four elements contribute to vI for

particular variable.

- 10 -

Similarly the Truncated Newton Method can be summarised as follows:-

(o) (0))

(1) Set k = 0, initialise Xg1 3 calculate I (5

(2) Set ¢ = 1, calculate VI (x(k)) and VZI (x(k)) = A

(3) 1f || VI]|§ < e or K > Kmax then stop.

(4) Solve the problem AU = - VI by the linear c.g method described

Section 3.

(6) If u satisfies Wolfes Test I (Dixon [2]) goto step 6 else step 7

(k)

(6) If I(x + @u) satisfies Wolfes Test II + III (Dixon [2])

then set x(k+l) £ x(k) + u ; k+l and goto step 2.

else call a line search to find a value o that does satisfy Wolfes

tests II and III, then update x and k and goto step 2.
(7) Replace A by an appropriate positive definite matrix and goto step 2.
Full details in both codes are given in Ducksbury [3].

Tests were undertaken on the above problem for a variety of values
of R, the most interesting being those with R = 500. The grid size was
varied upto 64 x 64. The results are shown in Fig 3. The sequential c.g
code required in excess of one hour to solve a 39 x 39 grid (4111 unknowns),
the DAP just 34 seconds, this being a speed up of 104 over the DEC 1091 (35
over the ICL 2980) at a point where only 3/8 of the processors of the DAP
are in use. For a grid of 64 x 64 processors (12036 unknowns) the conjugate
gradient method on the DAP required 50.76 seconds, whilst the truncated
Newton method only required 13.21 seconds. Further details can be found in
Ducksbury [3].

5. THE NAVIER STOKES PROBLEM

The Navier Stokes problem described in section 2 has been implemented
and tested on the ICL DAP, unfortunately it was found that there was

= 131 =

insufficient store available to use the Truncated Newton method that had
proved more efficient on the previous problem but no difficulties were
experienced in using the conjugate gradient code.

The boundary conditions imposed are illustrated in Fig 3a, this is a

well posed problem and as anticipated the optional function value decreases

steadily as the grid is refined.

3 x 3 5x 3 9x9 17 x 17
Value of I | 0.2037 0.080917 0.03533 0.01730
CPU 2:56 5:39 14:11 13:51
Total CPU f 36:37
Iterations 82 164 417 389

The results shown in this table were obtained by starting the optimi-
sation problem with the finer mesh from the solution with the coarser mesh.
With the bilinear element interpolation at this point does not alter the
function value, providing the boundary conditions can be accurately repre-
sented py the shape function, which is the case for the above problem.

Difficulties were however experienced when this approach was applied

=0 the cavity driven flow problem. On this problem the singularity at the

per corners cannot be matched accurately by the boundary conditions

lied by the bilinear element. So when interpolation was attempted the

ction value increased, as indeed did the optimal function value.

s S

(1]

(2]

(3]

CONCLUSIONS

The finite element optimisation method can be applied to the solution

of general nonlinear sets of partial differential equations.

When the set is a function of two dimensions and is steady the problem

maps readily onto the ICL Distributed Array Processor and very efficient

codes can be implemented.

REFERENCES

Dixon, L C W, Ducksbury, P G and Singh, P: "A parallel version of the
conjugate gradient algorithm for finite element problems," Technical
Report No. 132, Numerical Optimisation Centre, The Hatfield Polytechnic,
1982. :

Dixon, L C W, Spedicato, E and Szegl, G P: "Nonlinear Optimisation:
Theory and Algorithms,'" Birkhauser Press, 1980.

Ducksbury, P G: "An investigation of the relative merits of optimi-

sation algorithms on the ICL-DAP," PhD thesis, The Hatfield Polytechnic,
(to appear).

Singh, P: "An investigation into the prediction of the flow of viscous
incompressible fluids," PhD thesis, The Hatfield Polytechnic, 1983.

Stone, H L: "Iterative solution of implicit approximations of multi-
dimensional partial differential equations,' SIAM J. N.A., vol.5, no.3,
September 1968,

w T

Q|

- —

g =

96

d80- 131 %
1601-030°

4Z1S 04149

QN
AR

-

- 14 -

¢ " SI338=3llLl > 807

Figure 1.

01901

¢J Hdbd9d

U5 Sy 07

A

1718

e Q€

1

0143

9 O

>
C
1

I

1

(G
= peed

...L‘r'"
- (O

0

1601-230%
dyg-T1o01 X

01907

dWIL 907

(SUNOJ3SH

Figure 2,

-~ 15 —

apoo ZH.HmﬁPCmSWmm,

apoo wUAHmmpcmswmm

SpPO2 NI ToTIBeJed

apod np TeTTeJed

X O D> O

P - 24LS UlHY

]

S &7 CE S1
| : [

JI190 1

(5335) 907

Figure 3.

- 16 -~

p=0 - lhxl u=1, wv=0
(1,0 (1,17
= -1 = 2 -%
u = 2(X, = %) ; <_iu (x2 5)
v=20 v =0
=0 '—>§ \% <« V=u-=20
ix* \
% \
A I S C TR GRSt) .
(0,0) (O, 1) M,
Wy v=0
Figure 4a.
)
p= ®y u=1, wv=0
(1,00 X 1,1
N N
u=0 : Q =0
: \ N
v=0) S ‘\\\ ve=()
N AN |
N N |
N N |
(O . -‘:)) \\\\}\\\X\\\\\\\\\\\ NN \\\\\b() , 1) P ;
W, v
Figure 4b.

= T

