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Abstract

In a previous report by Dixon, Ducksbury & Singh [1] the solution of the
two—dimensional heat conduétion equation on the ICL-DAP was examined, the
solution method foliowed the Galerkin finite element approach. This led
to a set of linear simultaneous equations which was then sclved by
conjugate gradients. In this report we extend this approach to the
solution of nonlinear problems by employing the finite element least
squares approach, then completing the solution by an implementation of
the nonlinear conjugate gradient algorithm.

It is shown that large nonlinear finite element problems can be solved

efficiently on the ICL-DAP machine by this approach.




1. Introduction

This report describes the implementation of a parallel nonlinear conjugate
gradient algorithm for the solution of Morgan's problem on the ICL-DAP
computer. Comparisons are made with a sequential code which is available

on the Hatfield DEC system 10 machine.

2. The Problem

The problem that was chosen to illustrate this approach was the two-
dimensicnal Morgan equation given by

3u 3 7u Ju

5+ 5 -~ Ru— =0 (1)
Bxl 3X2 aXl
A solution to the equation is known
6x
u = l/sz

2.1 Solution by Least Squares

By the least squares finite element method the solution ¢f the problem can
be written as

min I = jJ e e dv -(2)

where ¢ = (¢ en) ard the minimisation is subject to some suitable
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boundary conditions.

By letting

s Bi=— and g =—=

zguation (1) can be written as 3 first order equations

3B aC
8 = kot - RAB = 0 (1a)
i 2
A
e2 =B - e 0} (1b)
1
ey = - %é =0 ' (1c)
%
Since we have three simultaneous equations the function (2) can be
written as
3 e 2 2 2
min I = JJ (e1 + el + eB)dV (2a)




and the gradient I can be expressed as

g ,_?._ 2 2 2
vl = JJ oz (e1 + el + e3) dav (2)
v
de de oe
rr 1 2 3
= 2 JJ (e1 P + e2.aE + ey ) dv (3a)
v
rr ae
” .
where Ej 2= (aj, bj, cj) :  the three degrees of freedom at each node j.

A diagonal weighting matrix W can be introduced which modifies equations

(2) and (3b) into

[f up
I:JngEdV (4)
v
and rr T\zlg
= W — 4
= e Sz (4b)
v
The matrix Wii =% i=1, ..., 3 was used.

When using finite elements the domain v is covered by a set of grid points
Pk and divided into a set of elements Vi having grid points at the inter-
sections.

On each element Vi we define 4 bilinear shape functions ¢ki(x) such that

¢ . (x) =1 at P, e V.

¢ . (x)

ki

0 at Pj for j £ k Pj e V. and at all points x k v
It is then possible to approximate the unknown variables A, B and C (of
equations (la) - (lc)) by linear combinations of these shape functions,
as follows

A=z akq)ki(x), B = g bkq:ki(x) and C = % ckq)ki(x)
k k k

where x e v, and the equations (la), (1b), (lc) respectively become

4 ¢, . 4 30, . 4 4
ki ki
e, = I + I -R I ad¢ . I i 0 (5)
i ko1 k axl fod k ax2 fest k ki kel k ki
4 4 9¢, .
ki
e, = I bk¢ki z & e = 0 (5a)
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3, 7% if x ¢ v, - (Bb)

1 2

4
- X
k=

The function and gradient can now be completely defined and calculated

from the available information

T = 2 z 3
? JJ (wle1 + w,el & W363) av (6)
i
el{
and utilising the fact that e1:1,2,3 only depends on Zj if Pj e v,
3 9

§&§§§.%g -2 3 jj (wle1 52*'+ w,e, Sig + w3e3 ;i—) av (7)
T . ~ 2 L. Z .
=R 25 =j =J

el.
2

3e
where the Jacobian 527

is obt%fned by differentiating equations (5) - (5b).
e

then a typical term —(x)
Bak

&F Pk€ V. the expressions for the derivatives are given in Table 1 where

If % & ¥, is identically zero if B ¢ v,

the summation 1s over the four shape functions relating to Vi.

= %5 3
de ‘ 4 de -a¢ki BeB a¢ki
9a - R¢ka b'¢'i ja. | 9x da. 3X.
Kk 5 1 2
abk Bxl klj:l jii Bbk ki abk
de ) B¢ki de Y ae3 .
- - T Kk
ac 8x2 ack ack
Table 1

In Section 3 we briefly introduce the
then describe the nonlinear algorithm

the DAP parallel processor.

2.2 Boundary Conditions

conjugate gradient approach and

used to complete the solution on

The problem was solved for a square domain (4.0, 4.0) to (4.5, 4.5) with

the values at the boundaries being fixed at their values from the given

solution, i.e.
6
A=us= s B =i o & = B o
= = z = = me g = Gl - o= e
Rx2 xl Rx2 x2 sz




3. The Conjugate Gradient Method

The conjugate gradient method was first introduced for solving linear
simultaneous equations by Hestenes and Stiefel (1952)[2] and then

modified for use in solving nonlinear optimisation problems by Fletcher
and Reeves (1964)[3].

A modified form of the Fletcher Reeves Algorithm has been programmed on
the DAP specially to solve the nonlinear optimisation problems that arise
when solving nonlinear partial differential equations by the least squares
finite element formulation.

It is our intention to show that this combination allows such nonlinear

P.D.E.s to be solved efficiently on the DAP.

3.1 The Algorithm

The conjugate gradient algorithm we used is based on the Fletcher and

Reeves [3] proposals and is described below.

(k)

1. Select an initial estimate for X where k = 0.

2. Perform initialisation for the line search.
k

3. Calculate f(x).
k

4. Calculate g(x ).

5. Evaluate g(zk)T.g(zk).

k. T k

6. If either g(z ) .g(g ) < €, or k > maximum number of iterations

THEN STOP.

7. If first iteration

THEN set direction p(k) = —g(gk)

KT g ()

g HT g5

OTHERWISE set g K) _ &(X%

(k)

and then p - _ g(fk) . B(k).p(k—l).

8. Perform scaling of the step length uk prior to the line search.
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9. Call a suitable line search routine.

(o) ) G000

10. Set
11. Set k =k + 1.

12. Go to Step 4.

The line search used at Step 8 combines the quadratic prediction technique

with the Armijo [4 | method.

=. Implementation

7 the algorithm there are just three items that need to be evaluated,

manmec ly,
E

§a2) [ = E.
i=1 7

where Fi is the contribution from element i,

4 BFi
b) VF, =g. =132 =
J J ieelj azk

where elj are the four elements containing Pj and where k is the

local node in element eli which correspondsto the global node-j.

Note there are 3 components to aF/azj.
N 4 oF, 4 1
T i 1
c) g g =1z (= 7)(2 —B—Z—)
j=1 iselj k iselj k

for convenience let us define
aF
i

g = T
i : azk

where N = no. of nodes

E

I

no. of elements.
“n implementing this onto the DAP the calculations for each gridpoint are
—=rried out on 1 processor. The details of the calculations are shown

n Appendix 3.




5. Results

The problem was solved over the square domain (4.0,4.5) with an initial
solution which was 90% of the true solution. The termination of the
conjugate gradient iteration occurred when ng < €, (=1E~10)(with a fail—r
safe on the maximum number of iterations). Because of the number of
unknowns involved (3*Number of points) the errors were examined by looking
only at the centre grid point of the mesh i.e. (4.25,4.25). The results
obtained are given in Appendix 1 with some associated graphs in Appendix 2.
The first test consisted of taking a mesh size of h = 0.125 (a 5 x 5 grid)
and then varying R from 5000 down to 5. For this test the DAP results
are given in Table 1 and the corresponding sequential ones in Table 2.

It can be seen that there is a good correspondence between the parallel

and sequential results with only a slight difference in the timings.

The second test carried out was the same as the previous one except that
the mesh size was reduced to h = 0.0625, (a 9 x 9 grid : parallellon
Table 3, sequential on Table 4). Again we see a good correspondence
between the parallel and sequential results but the timings are now more

favourable for the DAP.

It became evident from examining these two tests that the problem was more

difficult to solve for small values of R.

In Test 3, (Table 5 — DAP only), R was fixed at 500 and the grid size
varied up to 63 x 63. The results show unexpectedly that refining the
mesh size made no improvement on the solution (at least to within the
accuracy specified by EO). No sequential runs were made for this test

because it was considered the CPU time would be excessive.

This test was then repeated for R =.5. The results of Test 4 are shown
in Tables 6 (DAP) and 7 (sequential). We can see from the results that

the function value is gradually being reduced as are the errors in the




second and third unknown (B and C) ~s the mesh size is refined.
However, the smaller error in U is fluctuating. Again these results
demons*rate the speed up obtained by using the parallel processor although
even with the finest mesh tested less than % of the DAP's processors

were in use. Appendix 2 contains graphs illustrating some of the results
mentioned previously. Graphs 1 and 2 show the relationship between

LOG (R) and time for h = 0.125 and h = 0.0625 respectively. Graphs 3

and 4 illustrate the results obtained from Table 5 (DAP), namely, CPU

time versus grid size (a linear relationship) and effective function
evaluations (eFe's) versus grid size (approximately of order n2) respec—
tively. Graph 5 (DAP and 1091) shows the relative CPU times versus

grid size for R = 0.5.

6. Conclusions

In this report we have shown that the ICL DAP machine can be used to

solve nonlinear P.D.E.s. In particular it has been demonstrated that
when the problem is formulated as an optimisation problem by the least
Squares approach and when this problem is solved by the conjugate gradient
approach, all the calculations can be mapped efficiently onto the DAP's
parallel processors. This extends the work on linear P.D.E.s reported

in Dixon, Ducksbury and Singh [4] =

= number of improvements can be made to the existing algorithm. The
fresent implementation was written and tested before the recent extension
=T the DAP store (from 2Mb to 8Mb) . This extension would enable the run

“imes to be substantially reduced as, for example, in the calculation of

36 3.

Ej: and 3;3 per element. We will have 4 values w.r.t. x and 4 values
A
1 2

w.r.=. y (1 for each node) and, since we are using a 3 x 3 set of quad-

T=Ture points, this then gives a total of (4 + 4) x 9 = 72 values involved




in the calculation for each element. This set of values once calculated
for each element remain constant. However, with the 2Mb DAP the program
size and workspace needed meant that we had to recalculate ;;i and

¢,

E;i at each iteration. With the 8Mb DAP this can be avoided by storing
2

at the first iteration.

The run times should also be substantially reduced when a suitable
preconditioned form of the conjugate gradient algorithm is available on
the DAP. It is, of course, essential that the arithmetic implied by
such preconditiohing should map efficiently onto the DAP's parallel

processors. It is hoped to report on such a preconditioner shortly.
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APPENDIX 1
TEST ICL-DAP DEC 1091
H = 0.125 TABLE 1 TABLE 2
1 .
Varying R GRAPH 1 GRAPH 1
H = 0.0625 | TABLE 3 TABLE 4
2
Vari
anying B GRAPH 2 GRAPH 2
R = 500 TABLE 5 "
3 .
Vagring H GRAPHS 3 & 4
R = 0.5 TABLE 6 TABLE 7
4 .
Vanylag B GRAPH 5 GRAPH 5
Notes

1. The region of solution was (4.0,4.0).(4.5,4.5).

2. The three errors (U, Uxl, Ux2) quoted, were in each case taken from
the centre node located at (4.25,4.25).

3. The terminating tolerance used was 1E-10, except for Tables 6 & 7
where it became necessary to increase it to 1E-8.

4. The initial solution used was 90% of the true solution.




— T =

‘¢ S4Bl

COTEET Sov 9-3 E€STYBI"T TI-Z 918V9.L°6 v-2  gz2ze°s S-F G686T'6 L=H LS090° ¥ g
LL'8Z:T 619 L —Hd L59096°¢2 TT1-3 648100°9 v=E T0856°Z 9-4 15Gez°¢ 9-4 6TeLe'1 01
12 6V 692 8 —E LvecEe"T TT-3 $T288E'§ v-d Srile‘s 9-% ¥5266°'9 9-4 668T€"'T 0S5
60" €2 eeet 6 —H TSLLTO"S TI-3 LLVTIEE 6 r=3 68420°T S-4 08EES'T 9-% T€SGZ'2 00T
S1°6 Sov 6 —d 6LE9ES"T T1-3 8E€26L8"¥ =2 9/v92°T S-% BISV6°S 9-H 9G€E6°E 005
LB"S 60€ OT-3 9220L¥"G TT-3 92159966 -4 L6E8Y°9 S-4 8eL2l'c 9-F 0T96S'T 000T
€82 L1E TI-3 94L2S'V TT-3  S¥67'9 S-H L£98¢°T 9-E 66EVT'Q 9-% 82610'2 0005
(o8s:u) ZX[ %N n

ndo 2 s e IAON HYINTO LV HOMNH 4

"I °Tqer

9°80: T ULLY 9 ~H L66EST"T TI-% T8L99€°6 vr=H L218LE°S S-d veS.8°'s L—H 6ET88L"T S
8°T0'T €581 L -4 9S5096°'2 TT-8 90T2L°S v-B E182L'Z S-% 6S79S°Y 9-4 6LEVY'Z o]
vLEE 7692 8 -1 88GEEE"T TT-H 8VELST'6 9-H 868ESY"G 9-d ST09SY "9 9-% BITIVE"T 0S
G9°GT eezt 6 -3 T88LTO'S TT-2 €T€486°6 v=d 62€820°1 G- LEVEG'T 94 Hmum@m.m 00T
LE"Q S9r 6 —% TTY9e8'T TT-3 856.48°1 v=E 9Lv92'T S-4 891S¥6°'S 9-% LOBEE6°E 00S
26°¢ 60€ OT-H LEOLP"S TT-4 V59666 S-2 96£87°9 S8 seczTe 9-3 ¥50965°T 000T
68°G L1E TT-3 991828°% TT-4 9vv967°9 S-H L9€982°1T 9-4 GBEVT'9 9-% GLB8TI0"Z 000%
(o9siu) 243 TYAL D1D o s T !

ndo H00N FHINED IV HO¥dd




11

roeTqelL

9'ceioT _ v.18¢ 4 —H LS6SE9°E TT=" LGTO8YV "6 =2 BBOET'C G-I 68£68°2 L=~d GE8LC'E g
v.um"m 600vZ 8 —H €/.2¢2°6 LT-d S0008°6 ¥=d eveesTl 1 9-d 25588°6 L—d 820£0°¢ 0T
VAN OIZRES 5906 6 "3 1269°9 I1-3 B8ST08'8 p~E £2870°T G—H E964£°'2 9-d €EGLE'T 05
S'20:e 6681 6 —d gvgeg'e 11— vecer'9 S~d 988VI8"1 9-3 ¥TI96£°G 6—4d 2866L°L 00T
€°90'T vSre 6 —H SEELL T T4 ©SE68°4L -3 TI8SLZ"T S~d 219%¥6°G L—H €6LT9"9Q 005
6L PTILT O0T—H TS08S9°G T1-3 SS0€9¢°8 S-H vL87°9 S-d 66ET1T'E 9—d 6ivVL0°E Co0oT
BL 6E TLrT T1-9 200cLy € TT—3 LBBLTT 5-1 ¢cveee T 9-d4 6c¢L92°9 L-H SLVOV '8 000s
(o8s:uw) 2x1) XA 0
ado JAH TVAA DI g
JOON HYINID IV d0dyd
"€ °1qel

S'6S:T T686¢ L —H ¢TrSES € TT-3 vLTLi29°6 P=d €€8T1T1'2 S—d B6L959L°2 9—H 64CET0°T g

S°0G'T G892 8 —§ PVEGET 8 TT-3 LL6TTE L =3 90Tc0T"'1 9-H €v6GGE"8 Lt—1 G9vre-g o1
£0°9¢ S906 6 —H1 €£€9269°9 11-3 6vese '8 vt—d 686%0°1 S-d L9%8e°2 9-H 8Tc9ce’T 05
60°6T 6687 6 -1 6%228°2 TT—-1 G580%°'9 S—d 9€CTI8'T 9-H 98%0F° G 8-d TI06%'T 00T
LG 0T vare 6 —d CTreLiL T TI-4 80ves'/ =3 8G/2°T S-d L09P6°S L4 B8L825°'9 00§
LE'Q YILT OT-3 VEGG9'S T1-1 688€9€°6 G—H 9€/8%F°9Q S-d 66E£TT°¢ S—E SPSL0°C 000T
88°G TLPT TI-4 ceTeiv € TT-d 89/664°T S—H SIv662'T 9—H 8¥ci92'9 L=3 2r9LOV "8 000S
(oss:uw) 2XN TXN 1

ndo d4H TVAA 21D : T .
AUON MHLNED LY HOMME




12

b-FLiwd 54

T S o e
fh=F Fhibeedy = 0 120 Gi

90:) b*b
Seb Gr5
O Ny ,?J%_L,\r .mm;
Y %
*g elqel
94705 L92°619 6—H <cBLBE'C Ti—H 9eeL’6 =4 [Lclec 1 S—H L90L6T 9 =3 TO609"L £9
e o g08°Lee 6=d S9vBE’C 1T-3 6695476 v—d 9gl6c’'1 G-d L02c0cC'9 L—d BEchE’9 T4
66°€E vLL 6ST 6—d 6L0E9T ¢ TT-2 <c06Lc’'8 v—d 825621 S-H  ELST 9 L—H 60c9¢"L &g
81781 71902 6—d 26.088°T 1T-d T109%c"S v-3 668c’T S-H P9TLO'9 9-2 vvric'T 61
£5°0T vSve 6-H CcTveLL T TI-3 80ve8 L v—d 88421 S-d L0O9Y6°S L—H 84829°9 6
LETS S9F¥ 6-H Tiv9eg'T TI-H 8S6.48°7 ¥—H 94¥9e’1 S—H 89TSP6"G 9—3 L06EEG’E &
(088:1) Xl =N n HZIS
Ndo HAE TVAL 2L aTuo
JOON HYINID LV HOHdX




= 13

a e TV o Ly s ) . .
Sy hhibhiT  AYh ok 9—F Gonit - n-3g18%¢-b -7 2 bS5 §~F ¢€9C~¢ 7T L B9y bl
« -3 2 . S 2T E —FG\IGE §-F108ie 5 ~FLO e B \
ge55:LTH  Higne g-F 21810 N~F hiiih-8 Cx‘m‘: 7 -F10tie 5 L= FLoh - B s
Ge-9ith  oedbb g ~F hboso T H-% 8e4%85  H- Flhbh b G-FZOhi-3 7-F1%%L" Ui
"L 91qel
|- |
JEIATOANT HWIL NdD OL HENA NOY LOM | 61
!
[
LTEEOT L1182 S—H £€89€9°€E 6—d €08T19"L £-d Pe19L40°¢ - 96E6L"C 9-3 <£808°L 6
TL78E:S BST ¥T S=d £9196"9 6—4 LBEE0’S E-d VvBELY'S 3 B82TL9°8 9-3 PI88L"T L
ELCHT ELLY -8 S2881°1 6~2 B8cc6'6 E€-d GEEC L V-3 LeSvE’T S-1 28068°¢ S
€6°0T £S4 =3 2556L°¢€ 6—d 99¢15'2 E-d §2088'8 €-d 98E92L"T S-d ¢69r6°9 g
(oosit) cX[] =0 n VAR
- 449 TVAd 91D ! ——
! FION FHINID IV HO¥ME
"9 9Tqer
‘ |
v8' LTS | 0%0°GYE . 9-% 696EE°8 6-d 26v2S'6 | v-E 6vSYeT G- vL6ST 9-3 YOZZL'S 6T |
T°9S:T | g16‘8e G—d B88YE8’E 6—d LSS0T°6 m E—H 6EEETC -4 €9798°¢ 9-H3 290EBS'8 m 6 !
¥ |
! i |
! i |
0" Ov:T 6SY ‘vT m S-H ©wrI96°S 6—H 09BO¥F'8 | €-H EI6E’S -3 S¥88°L 9-H G0ccL'S L
GL"LS Sy v=% ELTV8T L 6% 9€ve8'8 | €~ 8€62'S v S66Z°6 9-3 20T98°C | G
Sl te S69 v—d [LZS6L'E 6—H SOT19'¢ ' £—d v1808°8 e G661 G-H BELL'B _ £ v
: - - - 4
|
Oosiuw
ﬁ v qdd A
ndo -
L L




APPENDIX 2

H = 0.125 )
ERAPE 1 ) ) CPU TIME IN SECONDS v
Varying R )
) LOG (REYNOLDS NUMBER).
I H e 0.BASE g TWO LINES: ONE FOR DAP
. ONE FOR DEC 10
Varying R ) _
CPU TIME IN SECONDS v
GRAPH 3
THE NUMBER OF UNKNOWNS
R = 500
Varying H
E! THE NUMBER OF
GRAPH 4 EFE's v L
UNKNOWNS
GRAPH 5 S CPU TIME v NO. OF UNKNOWNS
Varying H

Notes

1. EFE's érerEffective Function Evaluations and they act as a measure

of the amount of work involved in the computation

EFE's = F + n.G

where

F = the number of function calls,

o3
Il

9]
|

the number of unknowns,

= the number of gradient calls.
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APPENDIX 3

Mapping onto the DAP

The mapping used is the same as that described in Dixon, Ducksbury and
Singh [1] with an extension to incorporate the three degrees of freedom

per node.

Given an n x n set of grid points there is an (n-1) x (n-1) set of
elements, both grid points and the element information are held one per

processor as in Figure 1.

Plr B2 B3
*ELEMENT 1 WELEMENT 2
P4 BS 6
® w
ELEMENT 3 ELEMENT 4
P7 P8 P9
Figure 1. (3 x 3 global storage)

Two logical masks are created to mask out any unwanted grid points and
elements.

The calculation of g at the grid points is illustrated, given that the
least squares code has been performed and in each element we have 12
values for gEI (3 unknowns x 4 nodes) stored consecutively in an array
VGEL (,, 12). Local node numbering and the element information storage

is given below in Figure 2.

2 I
Y ELEMENT 2 YELEMENT 1
3 4
" ELEMENT 3 YELEMENT 4
Figure 2.

Figure 3 shows how each group of three values (from the 12) are mapped
onto the nodes. Assume for the example that we are centred on node 5

(8]
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The information from element 1 will come by a shift index (—; )

" " 1" o2 n " " " " o
” " " g 1 " . (=)
and " 1 " 4 is at our current position, i.e. node 5.
1 2 3
\ R T \ .r:::‘:::} _—
} ELEMENT la ELEMENT
2 > A 1
N
/ IR }\ i / }\\‘
4 6
i =E
AMANNS
{iﬁ:::;: ELEgENT }S@¥§§ﬁ ELEfENT
{: / —
7 / :—:::ll\ _"_":?11(\ 9

Eipure 9.

Using this information and the four groups indicated on Figure 3 we can
evaluate g.
1st Unknown
VG(,,1) = 1st value of 3rd group from element 1
+ 1lst value of 4th group from element 2
+ 1lst value of 1st group from element 3

+ 1st value of 2nd group from element 4

Il

VGEL(-,,7) + VGEL(-,-,10) + VGEL(,—,1) + VGEL(,,d).
2nd Unknown
VG(,,2) = 2nd value of 3rd group from element 1

+ 2nd value of 4th group from element 2

+ 2nd value of 1st group from element 3

+ ?nd value of 2nd group from element 4

VGEL(-,,8) + VGEL(-,-,11) + VGEL(,-,2) + VGEL(,,5).
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3rd Unknown
vG{,,3) = VGEL(-,,9) + VGEL(-,-,12) + VGEL(,-,3) + VGEL(,,86)

which can, of course, be generalised to

Il

DO 100 I 1;3

VG(,,I) = VGEL(—,,I + 6) + VGEL(—,—,T + 9) + VGEL(,—,I) + VGEL(,,I + 3)
100 CONTINUE

The vector product ng can easily be performed as

GTG = 0.0

DO 150 T = 1,3

GTG = GTG + SUM(VG(,,I)#**2)

150 CONTINUE

Appendix 4 contains the details of the implementation of the least

squares calculation used to produce VGEL.
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APPENDIX 4

The calculation of the gradient as mentioned in Section 2.1 (Equation 7)
is given by

2 J(e W el + e . w .- + e_w 4A§) av
J .

Now considering one element with the local node numbering as in Figure 1,

2 1

1
3 4
Figure 1.

and using the information given in Table 1, Section 2.1, we get 12
equations as follows.

From Node 1

aqjl a¢l
Unknown 1 = - elw1R¢1E¢ibi - 82w2 5;21— e3w3~§;;
a¢l
Unknown 2 = elw1 5;; - elwlR{blZai@i + e2w2¢1
a¢l
Unknown 3 = elw1 5}; + eSW3¢1
From Node 2
3¢2 a¢2
Unknown 1 = = elw1R¢2 2¢ibi - e2w2 5;1 - e3w3 3;;
8¢2
Unknown 2 = e1 1 Bxi elw1R¢2Za o, + e2w2¢2
3(1)2
Unknown 3 = elw1 EEE + e3w3¢2
From Node 3 " 36
Unknown 1 = elw1R¢32¢ibi - egw2 5;1 - e3w3 5;2
8¢3
Unknown 2 = elw1 5;; ~ e1w1R¢32ai¢i + 62W2¢3
3¢3
Unknown 3 = e,%, ETN + 63W3¢3

2



From Node 4

e w_R¢

Unknown 1 = 1R,

i
o)

Unknown 2

Unknown 3

The

the above equations.

Let

We are at node 2 in

i)

therefore to get to

B¢i

Bxl’ Bxé

SN(4), WT(3)

i) 4.

iii) U(,,3) contains the
i.en
U(,,Z) 1]

~and  U(,,3) i

The

E¢ibi =

e . w ifﬂ e_w
22 Bxl Sk sz

w

(¥R, a0, + e w0,

important point to note for the implementation is the similarity in

us first make the following assumptions:

Figure 1
node 1 we use a shift index of (,+)
L 2 no shift required

use a shift index of (+,)

" 4 " " " " " " (+’+)

i are readily available as PDX(,,4), PDY(,,4),

complete sel of unknowns

U(,,1) contains all the ai's

1 " b

a)

b)

calculations can now be performed as follows:

a. o,
La 6,

ASN(,)
BSN(, )
CSN(,)
1y v

E1(,)

11

and e

Ebi$i and Zci¢i

U(,+,1)*SN(1) + U(,,1)*S%(2) + U(+,,1)*SN{3) + U(+,+,1)*SN(4)
U(,+,2)%SN(1) + U(,,2)*SN(2) + U(+,,2)*SN(3) + U(+,+,2)*SN(4)
U(,+,3)*SN(1) + U(,,3)*SN(2) + U(+,,3)*SN(3) + U(+,+,3)*SN(4).

5 as defined by equations (5), (5a) and (5b) in Section 2.1

PDX(,,1)*U(,+,2) + PDY(,,1)*U(,+,3)



+ PDX(,,2)*U(,,2) + PDY(,,2)*U(,,3)
+ PDX(,,3)*U(+,,2) + PDY(,,3)*U(+,,3)

+ PDX(,,4)*U(+,+,2) + PDY(,,4)*U(+,+,3)

— REN*ASN*BSN
E2(,) = BSN - PDX(,,1)*U(,+,1) - PDX(,,2)*U(,,1)

- PDX(,,3)*U(+,,1) - PDX(,,4)*U(+,+,1)
E3(,) = CSN - PDY(,,1)*U(,+,1) - PDY(,,2)*U(,,1)

PDY(,,3)*¥U(+,,1) PDY(,,4)*¥U(+,+,1).

|
|

We now have the information necessary to calculate the twelve equations
previously mentioned. We will first make the declaration EGD(,,12) for

storing them and the code becomes:

DO 100 I = 1,4

PLANE = 2%(I - 1) + I

16 Plane will always point to the start of group 1i.

C Calculate unknown 1 for node i.

EGD(,,PLANE) = — E1*REN*WT(1)*SN(1)*BSN - E2*WT(2)

*PDX(,,I) - E3*WT(3)}*PDY(,,I)

- C Calculate unknown 2 for node 1i.

EGD(,,PLANE + 1) = E1*WT(1)*PDX(,,I) — E1*WT(1)*REN

#*SN(T)*ASN + E2*WT(2)*SM(I)

& Calculate unknown 3 for node 1i.
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EGD(,,PLANE + 2) = E1*WT(1)*PDY(,,I) + E3*WT(3)*SN(I)
100 CONTINUE

DO 156 I = 1,12

VGEL(,,I) = VGEL(,,I) + EGD(,,I)*GMULT

150 CONTINUE

where GMULT is an integration factor described below.

This has now given us the twelve required values for the complete set of
elements. The only additional point to be mentioned is the fact that we
are using a 3 x 3 quadrature set, hence the above code must be contained
within a loop which will obtain the appropriate shape functions from the
quadrature, calculate the appropriate integration factor GMULT and then
calculate a contribution for each of the 9 quadrature points and accumu-
late the integrated sum in VGEL(,,12) as is indicated.

There may be some redundancy in the above mentioned code but this has
been left in to avoid ccmplicating the exsmple with additional loops and

variables.




