Numerical
Optimisation

Centre

A PARALLEL VERSION OF THE CONJUGATE GRADIENT ALGORITHM

FOR FINITE ELEMENT PROBLEMS

by
L C W Dixon, P G Ducksbury and P Singh

TECHNICAL REPORT NO. 132 DECEMBER 1982

The Hatfield Polytechnic

Fho DUCKSBL &Y

THE HATFIELD POLYTECHNIC

NUMERICAL OPTIMISATION CENTRE

A PARALLEL VERSION OF THE CONJUGATE GRADIENT ALGORITHM

FOR FINITE ELEMENT PROBLEMS

by

L C W Dixon, P G Ducksbury and P Singh

TECHNICAL REPORT NO. 132 DECEMBER 1982

Abstract

The solution of the partial differential equations arising from the two-
dimensional heat conduction equations has been mapped onto the ICL
Distributed Array Processor. The solution method followed the Galerkin
finite element approach and each processor of the DAP handled its own
finite element. The solution was then completed by implementing both

the linear and nonlinear versions of the conjugate gradient method. Time

comparisons are given with the same solution method on the DEC 1091 system.

The authors would like to thank the SERC for their support and the RQueen
#zry College DAP Support Unit for permission to use their system.

SZ2C Grant No. GR/B/4665/5

1. Introduction

This report describes the implementation of two parallel versions of the
conjugate gradient algorithm (linear and nonlinear) on the ICL DAP computer
and their use in the solution of the 2-D heat conduction equations, as
described by Stone, H L [7]. The solutions were compared with similar

sequential codes on The Polytechnic's DEC system 10.

2. The Problem

The problem used for testing the implementations was the heat conduction

equation in two dimensions. This is given below, the temperature satisfies
d aT 3 aT
e = L Y —| = -
ax X o+ 55 [KY 251 = -0 (1)

where KX and KY are thermal conductivities in the x and y directions

Q is the local heat source/sink
T is the temperature
X and y distance coordinates.

It is well known that the solution to equation (1) will occur at the minimum

of

I= ”Kx(%)2 i KY(%)Z _ 2QT av (2)

A solution method for a set of p.d.e.'s that can be viewed as an optimisation
problem is described in Dixon & Singh [1]. For such a problem the objective
function becomes one of solving

min I = f F(T(x)) dv (3)
subject to the appropriate boundary conditions.
Now when using finite elements the domain V is covered with a set of grid

points x, and then divided into a set of elements Vi (in our case, of

k

rectangular shape) with grid points at the intersections.

“or each element there are shape functions ¢ki such that

1 at x

o . (x) K

ki

¢ki(x) =0 at X, for j £ k and at all points x ¢ vy

X+ X, y. + ¥
ice. ¢ .(x) = (1 - AE—E——i)(l - =

It is now possible to approximate T(x) by a linear combination of the shape

functions

i Tk.¢k.i(x) (4)

so that equation (3) becomes approximately

min I = I F(Z Tk.¢ki(x))dv (5)
k
on substituting (4) into equation (2) we get
9 . ad .
— ___,]; 2 __1-_ 2 _
F(T) = Jj KX{? % Ti} + KY{: 3y Ti} 2Q§¢iTi dav (8)

and on differentiating this with respect to T to get VF,
i i

8©i 3t . 3¢i 9t .
v.F(T) = ” PKX —= {2 —3 T } + 2KY —2 {3 —3 T}
i X . 99X J Ay j dy J
- 2Q% ¢, AV (F)

Al

Differentiating once more gives V’F_ .
1]

3¢i 3¢J 3¢i 3¢j
2 - i, e
VijF(T) = J[2KX relel 2KY 5y 3y dv (8)

When the Qi's are point sources at the nodes then they can be moved outside

the integration, then equation (6) becomes

3¢. ¢ .
. _1 2 e 2 .
F(T) = = ff KX{; W T % KY {2 5y T,}* 4V - 2Q.T, (6a)
el 1, i
el
equation (7) becomes
28
3¢i B¢j DY 3¢j
ViF(T)el = f[2KX EE_ {L E;— Tj} + 2K¥§E S;— Tj} dav - 2Qi (7a)
el
and equation (8) becomes
3ad. 3d. ad. 9¢.
3 . 1 J 1 J
Vij(T)el = [J 2KX 5;— 5;— + 2KY 3y 3;" dav (8a)

el

-
In the problems taken from Stone [7] which were the basis of those solved in
this study, Neﬁhanntype boundary conditions were imposed.
The solution of problem (5) then becomes equivalent to the solution of the
set of equations (6). If the partial differential equations are linear this
is a set of linear equations which could be written Au = f. However, if the

partial differential equations are nonlinear then (6) will alsc be nonlinear.

2.1 Solution of the set of equations

When solving equations of the form
Au = f
where A is a real N x N matrix

u an N unknown vector

f an N known vector

if N is large there may be problems with computer storage. In the finite
E

element approach the matrix A will be held as I Ae (namely, the sum of all
e=1

the element matrices).
All of the values in A° will be zero except for those occurring in rows/columns
corresponding to variables in the eth element. It is, therefore, possible

to solve the above set of equations without assembling the original matrix A.

The matrix A is sparse and could be assembled using a particular order of the
grid points to give a diagonal structure, in this particular problem the
matrix would have 9 nonzero diagonals arranged in 3 groups of three. This
structure arises because any node can only lie in four elements and these
share 9 nodes. Special solution methods exist utilising this diagonal
structure but that advocated here is, however, based on using the element
matrices individually, P Singh {6].

Using this approach we can evaluate Au element by element, by taking each

=lement matrix in turn and multiplying it with the correct elements of the

.
vector u, the answers being placed in the correct global positions. This

makes the use of a conjugate gradient method advantageous.

3. Conjugate gradients

The conjugate gradient method is an iterative method that converges to the true
solution in a finite number of iterations assuming no rounding errors. The
idea was initially presented by Hestenes and Stiefel (1952)[3] and subse-
quently modified for optimisation purposes by Fletcher & Reeves (1964) [2].

We intend to show that it can be implemented very efficiently on the ICL-DAP

parallel processing computer.

4. System/language for implementation

The DAP is an SIMD machine which has a total of 4096 individual processors
arranged in a 64 x 64 matrix structure, each processor connected to its

nearest four neighbours.

The language used for the implementation is the high level language DAP-FORTRAN
which is an extension to the existing ICL 2900 FORTRAN, comprising 51 built-in
macro routines for the manipulation of vectors and matrices.

Access to the DAP is via the Host 2980 computer. Details of the language

constructs and program development process can be found in [8] and [9].

5. The algorithm

5.1 The linear algorithm i

[- B, § Biba 3 A

The basic linearﬁalgorithm used is described below (and on Flowchart 1).
Note that we are solving the set of equations Au = f.

1. Evaluate V?F (A)
(0)

2, Initialise the right hand side vector f (it is set equal to the source/

sink points, and zero elsewhere).

3. BSet 3(1) = 2(0) and E(O) = 2(0) (u being the unknown and p the search

direction).

NO

(k—l)T_f(k—l)

SET p = £ + gp

YES

MAX

ITERATION

YES

v

v

\/

FLOWCHART 1

{ STOP)

s e

0
4. Evaluate E(= A (Note that we can perform this operation without

having to assemble the matrix A).

(1) (0) (0)

5. Evaluate T =T -w
: 6. If £(1)T-£(1) < e then stop
E P Set‘g(l) = 2(1) and k = 1
; 8. Evaluate E(k) = A.E(k)
9. IE E(R)T.E(k) < ¢ then stop
i de a(k) . E(R)T-f(k)
R M
II 11. Update the unknown u(k+l) = E(k) + a(k} _(k)
i k1) _ plk) (k) E(k}
(k=1)T .(k-1)

T . F
13. Update the search direction p(k+1) = f(k+l) + G)

p(k+l)T-p(k+l)

4., IF < g then stop

15. Set k = k + 1, Goto step 8.

Note that an upper bound on the number of iterations is also imposed as a

termination criteria.

5.1.1 Form of calculations

The products we need to evaluate are

1) fl.f
ii) QT.A P
iii) A.p

: T

iv) g P

The calculations involved in the algorithms are based upon data which is
associated with each of the elements, in each element we have

a 4 x 1 vector of values to form VF

adx1l H " N N I

and a 4 x 4 matrix " " " v gip,

.
The first product gT.g is a straightforward vector product. For the other
three products, however, we must have the values of p at each of the grid
points X, - The way in which this is achieved is to add contributions of
the elements at a node. At each node there are 4 neighbouring elements,
(or in the case of a boundary node just two values, or one for a corner node).

The local node and element numbering is

2 node 1
ELEMENT For nodes
3 4
2 { ELEMENT
1
and 'xi For the elements
3 4

to form P, at node x.
i i

where j is the local node in element el which corresponds to the global node 1i.

i.e. take the 3rd value of P from element 1

+ 4th " feoon " " 2
= lst " een " " 3
+ 2nd " woon " " 4-

The calculations are as follows:
E 4 4

(1) pAp=zx [z 1 p.a% .p]
el=i j=1 kei 3 J0K K
4 4 el
(i) A.p = I b A . B, For e 210y ..sy B In each element the four
j=1 k=1 20K K

values of the resulting vector are placed back

at the correct local nodes.

. N 4 .. A
(it} B -p < & [(z P.7)(E i I
pl=t @l=1 9 di=i

where N the number of nodes in the system

]

and E s " " elements " " i

5.2 The nonlinear algorithm

The basic nonlinear conjugate gradient algorithm due to Fletcher and Reeves [2]

is implemented as described below (and on Flowchart 2).

(1)

Initially we guess values for u;

N i=1, 2, ..., N and then evaluate
(1)

VEF at u
I+ Setk=1

2. Evaluate VF(k)

(k)TVF(k)

3. If VF < ¢ then stop

4., If k=1

then set E(k) = —VF(k)
(k)

k) vE ?VF(k)
VF(km%)TVF(k-l)

else set B(

and P_(k) = -VF

(k)

5. Evaluate o as o = arg min (F + op)

(ke1) _ 00 () ()

(k) , () (k1)

6. Update the unknown u
7. Set k = k+l
8. If k < k max

then GOTO step 2

else stop.

Tests were undertaken to investigate the additional cost involved in using

this algorithm to solve quadratic problems rather than the simpler algorithm
described in the previous sections. Additional costs can be expected as at
stage 2 the gradient vector is recalculated at each iteration by entering the

finite element procedure rather than updated as in the simpler algorithm.

(_ START J

Y
GUESS u

SET KX, KY, Q
-
YES. ist NO

ITERATICN .

EVALUATE EVALUATE

F, VF and F and vF
VF

(1)

i

1 f -)

EVALUATE

9F L. oF

YES 1st NO

- ITERATION

(4]
p() .

-9F . AT T
. : grlk) gpli)

T
vF(k—l) .VF(k—l)

& T

SET

' oK) _gpli) | (k1)
. i ¥ == B

SEARCH FOR MIN, u(k)

SET

I | (0T ()

P(k}T.VzF(k).P(k)
1
SET
S k) (k)

NO MAX.

ITERATION

sTOP i)

FLOWCHART 2

Note 1 The function F is not actually nceded (or calculated) with the

present objective function.

Note 2 The unknown u is our temperature.

= 0=

Usually the Fletcher-Reeves algorithm involves a complicated line search at
step 5 but this was not introduced into this study as the tests were in fact
undertaken on quadratic functions so the solution was known analytically.

So o is derived from the following fact, given the Taylor expansion

T

F(T + ap) = F(T) + a(VFl.p) + %a?.pl.V%F.p

3
there will be a minimum of F when 3% =0

F T T s
= = VF .p + op .V°F.p
hence a = _VFT'P = _VFT’P
pT.VzF.p PT[VF(k) - VF(k‘l)]

In a complete inplementation then step 5 would need to contain a parallel
line search, some initial experience in this area is described in Patel

(1982) [4].

5.2.1 TForm of calculations

In this case we need to calculate the following

(i) .
(ii) P.
(1ii) 9Fr.P.

(iv) VFT.VF.
{(v) PT.V2F.P

Again we need to form values of P (and also VF) at each node, and this is the

same as was described for the linear algorithm.

4
(1) vFi =1 VFjl where j is again the local node in element el which
el=1
corresponds to the global node i.
4 el
(ii) P, == P’
el:]. J
N 4 4
T .
(1i1) vFlp =3 [z whz P%H)
i=1 el=1 el=l
N 4 4
1
(iv) VFWF = 3 [(z el (2 vFS)]
i=1 el=1 J el=l
T E 4 4 1
(v) P .V2F.P=3 [t £ PpY:F .p |
J.k Tk

. ¢ -

Section 5.3(iv) describes how some of the calculations are either avoided

or kept to a minimum.

5.3 Detailed implementation

(i) Modularity

This method of solution and the problem naturally divide into a number of
separate tasks, namely, setting up the heat sources and sinks, thermal
conductivities KX and KY, defining shape functions, the guadratic points and
weights, and calculating v?2F {and VF in nonlinear case), in addition to the
conjugate gradient routine itself. Each of these was placed in a separate
subroutine to minimise any recompilation/reassembly in the event of altera-

tions to Q, KX or KY etc.

(ii) Mapping the problem to the DAP

In the problem we have an n x n set of grid points and an (n-1) x {n-1) set
of elements, where n < 64. The grid points will be held one per processor,
and when we need to use information in the elements we also hold these one
per processor, as though they have been shifted up 1 place diagonally with
the last row and column ignored.

e.g. Global storage for a 3 x 3 grid.

Pl P2 P3
% %
ELEMENT 1 ELEMENT 2
P4 PS5 6
% X
ELEMENT 3 ELEMENT 4
P7 P8 P9
Figure 1

An array G2FEL (,, 16) is used where plane 1 will contain all the values in
position (1,1), plane 2 those in position (1,2) ... plane 16 those in (4,4).

One of the first tasks of the DAP entry subroutine is to set up two logical

w 18 -
masks, one for masking out unwanted grid points and the other for unwanted

elements.

Earlier the method of calculating VF at each of the grid points was described, (5.1
applying this to the DAP, then we can use the available shift indexing _
facilities. Given that we have declared an array GFEL(,,4) (Gradient of F
at each ELement),we will illustrate the calculation with a 3 x 3 grid with
four elements then the indexing used to work out the gradient at the point 4,
(Figure 2) would be as follows (also assume we are centered on a processor at
point 4).

To get the 3rd value of VF from element 1 we would need to move to point 1,

hence using GFEL (-,,3).

2 1
K ~
ELEMENT 2 ELEMENT 1
3 4
ELEMENT 3 ELEMENT 4
Figure 2

For the 4th value of VF from element 2 we would need to move to point 2, hence
using GFEL(-,-,4) and similarly for the other 2 values

lst from element 3 + GFEL(,-,1)

2nd from element 4 GFEL(,, 2) (Note that here we are using no shift,
since it is our current position).

Extending this to an n x n grid and adding these values together will give us

YF at each of the grid points, i.e.

GF = O

GF(MASK1) = GFEL(-,,3) + GFEL(-,-,4) + GFEL(,-,1) + GFEL(, ,2)

and VFT.VF being worked out by

GFGF = SUM (GF*¥2)

Note how easy the overall summation is in parallel.

s (LB =

Once this information has been worked out, a later stage of the algorithm
requires the calculation of PT.VZF.P. This time we are centred on the
element and needing the values of P at the 4 neighbouring nodes. Using
Figure 2, then if we are at element 2, then

P1 will come from P(,+)

P2 will come from P(,) or just P (our current position)

P3 will come from P(+,)

and P4 will come from P(+,+)

(iii) Mapping the problem onto a sequential machine

The two main points to note here are, firstly, that given that we 'are on'

a particular element we must be able to find out the global numbers of the
four local nodes in order to perform our calculations (this posed no problem
on the DAP with its indexing facilities) and secondly, the calculation of
PT.VzF.P (or PT.A.P) without forming the global matrix, the latter being done
in two stages by first forming V?F.P as is described earlier in the section.
Both this and the former calculation when run on a sequential machine require

an additional array containing for each element, the global node numbers of

that element's local nodes. This is not necessary on the DAP.

(iv) Reduction of calculations

It was mentioned earlier how we could reduce some of the calculations involved.
Firstly, for calculating P at each grid point, since in the algorithm we |
initially set P to -VF, then at a later iteration k we can just calculate

fhe contribution of VF at each grid point and modify the value of p by

(k-1)

subtracting this fgom P This also avoids having to store 4 values of

P in each element which reduces the overall storage.
Secondly, in working out VFT.P-we will previously in the algorithm have worked
out VF and P for each grid point hence
N 4 4
i el

vFlPp=z [(z whE %)
iel wl=a 4 gixg

- 14 -

is simply

T
VF .P = VF..P.

- 1 3

ot =

which is the standard vector product of two 1 x 4096 element vectors (the
implementation on the DAP has these held as 64 x 64 matrices and VFT.p is

obtained as GFP = SUM(GF*P)).

6. Test problems and results

The main problems to be described later in this section come from Stone [7]

who ran n x n problems for n = 11, 21, 31.

The programs were tested at a number of stages up to the final completion and

at each of the stages various data items were traced out on the DAP.

(i) The coefficient routine was checked to ensure that it was producing
the correct element matrices as compared with the sequential one.

(ii) The boundary routine for adjusting the appropriate element matrices
was verified,

(iii) as were the masks in the entry routine for fixing the known boundary

values of temperature and gradient to 1 and O respectively.

6.1 The preliminary tests themselves consisted of three main cases,
(i) with the right hand side equal to zero
(idd.) with the right hand side equal to -2.0

(iii) with the right hand side equal to a point source/sink.

6.1.1 CASE 1

For V2T = -Q

where

Q is a constant O

T is fixed at all boundary points to the value of 1.0

g is fixed at all corresponding points on the boundary to 0.0

KX and KY fixed at 1.0

the true sclution to this problem is
T=1+x+ Yy + xy
and both parallel and sequential programs were successfully run to solve

this problem for a 5 x 5 and 11 x 11 grid size.

6.1.2 CASE 2

For V°T = -Q
where
R is a constant 2
and T, g, KX, KY are the same as before in Case 1
the true solution to this problem is
T=1+X+Y+ XY - Q/4.(X* + Y?)
and again both programs run the problem for 5 x 5 and 11 x 11 grid sizes,

all answers agreeing with the above equation.

6.1.3 CASE 3

For VT = —Q
where
R is a point source

T is fixed at just one boundary node, and the unknown at remaining points

g is fixed at the one corresponding boundary point to zero Ve SRR AR RD

KX, KY variable and to be described later.

Before the larger sized problems referred to by Stone [7] were run, a number
of small and trivial point source problems were tested.

1. A 3 x 3 problem with just one point source of value 2.0 located in the

centre at position (2,2)

+

(A%]

A 5 x 5 problem with 3 point sources located at the positions (2,3},
(3,3) and (4,2) with values of 1.5, 2.0 and 1.0 respectively.

As for 2. except for a point sink located at the position (2,4) with a

)
.

value of -1.0

s B 1
4. As for 3. but with an 11 x 11 grid size.
All the four programs were satisfactorily compared before moving on to the

main set.

6.1.3.1 POINT SOURCES (main problem)

The problems all had three point sources and two point sinks and these were
located as below.
For 11 x 11 at (2,2), (2,10), (8,2), (6,6), (10,10)
For 21 x 21 at (2,2), {(2,20), (14,3), (10,11), (20,20)
For 31 x 31 at (3,3), (3,27), (23,4), (14,15), (27,27)
For 41 x 41 at (6,6), (6,36), (28,6), (20,20), (36,36) and for

64 x 64 at (9,9), (9,60), (54,9), (34,34), (60,60) with values of

1.0 0.5 0.6 -1.83 -0.27 respectively.

As has been previously mentioned the boundary conditions were imposed by
fixing the temperature at one point on the boundary to 1.0 and the corresponding
value of the gradient to 0.0, and all other temperatures to O.
Note that in our nonlinear algorithm the values of Q were divided by 4 since

each Q comes into 4 sets of equations, its overall effect must be Q and not

4q.

6.1.3.2 Conductivities

Four different conductivity distributions were used in the tests. They were
specified independently in the x and y directions and located at the centre
of an element.

PROBLEM 1. The model problem with KX and KY equal to unity over the entire

region.

PROBLEM 2. The generalized model problem with KX and KY both constant, but

with KX 100 times greater than KY.

PROBLEM 3. This was the heterogeneous test problem, here the region was

subdivided into a number of smaller regions, refer to Figure 3.

334N0S JLHIHX
MNIS LgaH b
I=AM‘001=xXM"
B Tely Te¥y B
Bl %Y R
BN e 4 R

e BT s

£ 2an3dtg

£

uo

0

O

SOT3TATLONPUO) TBUWJISYL

~ g0 ¢

W

o T

PROBLEM 4. This was the same as for 3. except that in one of the regions,
where KX and KY had been set to 1.0, the conductivities came via
random numbers. Numbers in {0,1) were generated and if less than
0.1 the conductivity in x and y directions were set to zero,
otherwise they were set to one. This should have generated a
large number of obstructions to heat flow. Problems 3 and 4 are
of the same order of complexity, this being confirmed by the

results (Graph 7).

6.2 Numerical Results

The numerical results obtained are divided intc two sets depending on the code
used, i.e. linear and nonlinear. Those for the linear code are given in
Appendix 1, Tables 1-4 and for the nonlinear code in Tables 5-8. Timings

of the runs and number of iterations (of the conjugate gradient solution
routine) for each grid size are given. These results are shown graphically
in Appendix 2 where the grid size is on the x-axis and the LOG of time on

the y-axis. (Note that the LOG of time had to be used because of the large
range of times obtained - particularly for the sequential cases).

In all but a few cases (which have been indicated) the tolerance for termin-
ation was 1E-6. A suitable upperbound to the iterations was set at 2% no.

of points.

It is apparent from the graphs that the parallel implementations are consider-
ably faster than the sequential ones, Graph 1 was taken as far as a 64 x 64
problem for the parallel case just to prove that it was possible within a
reasonable time but this could not be loaded on our seguential computer.

The curves/lines for the parallel case increase only slightly in comparison
with the seguential runs whose times soon become large as the number of
unknowns is increased or as the ill-conditioning gets worse.

As would be expected the linear algorithm exhibits much lower times than the
nonlinear algorithm which of course has the extra computational effert required

in the calculation of the gradient at each iteration.

< T =
The only still unexplained results came from the nonlinear sequential algorithm
when run for problems 3 and 4. The resulting gradient failed to be signifi-
cantly reduced and the iteration was stopped after 2N iterations. Surprisingly
the parallel algorithm on the other hand terminated successfully on ng
tolerance although both programs were setting the same subregions for KX and

KY and using the same algorithms. This seems to imply that the parallel
implementation is much less affected by rounding error even though the arith-

metical precision was slightly less, i.e. 7 v 8 decimal places.

7. Conclusions

The two parallel implementations have exhibited the fact that the solution

of p.d.e.'s using this method of apprcach is very suitable to the SIMD class
of machines and in particular the DAP.

Almost certainly one of the main advantages of the DAP in this case was the
fact that the processors are connected to their nearest four neighbours, via
row and column data highways, and the powerful shift indexing facilities make
good use of this. Thus we have a simple but an extremely effective means of
communicating with other nodes and neighbouring elements.

This facility can be compared to the two sequential programs which need to
keep, for each element, a separate record of the four neighbouring (local)
nodes, which must be set up and then indexed correctly. This is an overhead
for the sequential case, not to mention the fact that it is a complication

in the wrifing and checking of the code which is not present in the algorithms.
From the DAP's point of view it makes no significant difference whether it is
calculating just 4 element matrices (a 3 x 3 problem) or 3,969 element
matrices (a 64 x 64 problem) as either most or none of the of the processors
will be switched off (masked out).

The algorithms that were employed for these solutions are basic with no
sophisticated improvements though many are known. In theory we shouid

terminate with the correct solution in at most N iterations (where N is the

e
number of unknowns) but this assumes we use exact arithmetic with no rounding
errors, which in practice is not the case. Improvements to the basic
algorithms can be made, see for instance Powell (5].

Other major improvements are wellknown such as preconditioning, the multi-
grid approach, etc., where the system of equations
AX = y

ig transformed into a new system

2 -

<y

which will have a much smaller condition number in order to speed up the
convergence. Parallel implementation of such a method will be the basis of

additional work.

References

1. L C W Dixon and P Singh, '"The solution of PDE's via finite elements and
optimisaticon on a parallel processor,” TR 117, The Numerical Optimisation
Centre, The Hatfield Polytechnic, 1982.

2. R Fletcher and C M Reeves, '"Function minimisation by conjugate gradients,"
Computer Journal, vol. 7, 1964.

3. M Hestenes and E Stiefel, "Methods of conjugate gradients for solving
linear systems,'" J. Res. Nat. Bu. Standards, No. 49, 1952.

4. K D Patel, "Implementation of a parallel (SIMD) modified Newton algorithm
on the ICL DAP," TR 131, The Numerical Optimisation Centre, The Hatfield
Polytechnic, 1982.

5. M J D Powell, "Restart procedures for the conjugate gradient method," Mat:
Programming, Vo. 12, pp 221-254, 1975,

6. P Singh, "A note on the relative efficiency of conjugate gradient algorit-——-
for solving linear equations arising from finite element calculations,"

TR 126, The Numerical Optimisation Centre, The Hatfield Polytechnic, 198z.

7. H L Stone, "Iterative solution of implicit approximations of multi-dimen-
sional PDE's," S.I.A.M. Num. Anal. Veol. 5, No. 3, Sept. 1968.

&, "The DAP-FORTRAN Language," Tech. Pub. 6918 ICL.

9. "The development of DAP programs,' Tech. Pub. 6920 ICL.

Appendix 1

Linear
Table 1
Table 2
Table 3

Table 4

Problem

Problem

Problem

Problem

Normal termination on

Nonlinear
Table 5
Table 6
Table 7

Table 8

Problem

Problem

Prcoblem

Problem

Normal termination on

_ 21 -

1 with KX

I

1; ¥ =71

2 with KX 100, KY =1

I

3 with KX, KY subdivided
4 with KX, KY subdivided, with one region generated

from random numbers.

JSE; < 1E-6 or
JpTAp < 1E-6

1
2
3

4

ng < 1E-6

T

P TIME(S) ITERATIONS A
s12k SEQ. PAR. SEQ. PAR. nete 3
11 11.7 1 1.06 | 46 46 11.0
21 18.8 | 7 81 85 85 11.7
31 58.1 2.18 125 125 26.6
a1 2:17.1 3.32 167 205 41.3
64 note 1 517 note 1 339 -
TABLE 1
BN TIME(S) ITERATIONS i
SEZE SEQ. PAR. SEQ. PAR. note 3
i 14.7 4.1 240 265 3.6
21 15233 8.17 480 555 10.2
31 5122 11.9 760 819 26.2
a1 13:46.6 20.01 1060 1397 41.0
TABLE 2
- TIME(S) ITERATIONS —
BIZE SEQ. PAR. SEQ. PAR. note 3
11 11.05 5.9 246 391 1.87
21 1:50.4 11.69 650 800 9.4
31 6:54.0 21.34 950 1481 19.4 - note 2
41 note 1 - note 1 - -
TABLE 3
g g TIME(S) ITERATIONS GATN
2 SEQ. PAR. SEQ. PAR. neie B
11 12.03 61 260 403 1.97
21 2:33.5 12.79 875 880 12.00 |
) note 2
31 6:59.8 20.15 1000 1400 20.83)
41 note 1 - note 1 - -

TABLE 4

-2

_— TIME(S) ITERATIONS —
LAk SEQ. PAR. SEQ. PAR. noLe 5
11 33.0 N 37 3.9
21 4:15.9 15:2 25| 70 70 16.2
31 12:38.4 22.7 %-2] 100 101 33.4
TABLE 5
— TIME(S) ITERATIONS i
515 SEQ. PAR. SEQ. PAR. hoke 'S
T
11 2:15.7 0 156 147 4.1)
519)
21 17:11.1 T 298 288 15.9 | note 2
i 13-
1) 54:37.0 “TT37+9 439 436 33.5)
TABLE 6
GRID TIME(S) ITERATIONS GAIN
BIZE SEQ. PAR. SEQ. PAR. B 2
T o
11 3:32.1 HS&TSI 242% 241 note 4
RPN
21 51:16.0 —2+16.3 882 609 note 4
2.2 Ak
31 note 1 —3:12.9 note 1 863 - note 2
TABLE 7
e TIME(S) ITERATIONS CAIN
RLAE SEQ. PAR. SEQ. PAR. ek
rC]
11 3:37.0 '“57T?Z§‘ 242% 257 note 4
[54 Cy 8
21 note 1 ~ 2278 Vﬁote 1 664 -
: 2 5[:
31 note 1 22 .2 note 1 904 - note 2
TABLE 8

*¥ 2 x no. of points imposed as limit, maximum gradient not reduced
significantly towards this limit, namely 0.12, 0.012 and 0.18
respectively.

o Amas dan B 22 Rewwh A RLX AL
,.5%3 ot

—— i

Notes

Note 1

Note 2
Note 3

Note 4

- 24 _

Some jobs not run due to time considerations, and in the case of
Table 1 (64 x 64) sequential) there was insufficient store available.
This test case required 116,836 words (-114K) of store plus the
program area itself which is beyond the limits for running an over-
night batch job. The only way of running the job would be to use
random access files on disc for holding some of the arrays.
Necessary to reduce terminating tolerance to 0.0001.

The improvement of DAP version over sequential DEC 1091 version.

No gains were worked out due to the unexplained sequential results.

Appendix 2

Graph 1 - Problem
Graph 2 - Problem
Graph 3 - Problem
Graph 4 - Problem
Graph 5 - Problem
Graph 6 - Problem
Graph 7 - Problem
Notes

(1)

(ii)

For graph 7 the

w DG

+ Linear

2 Nonlinear

3&4

sequential data is not included since the program

failed to converge after 2N (and even after 4N) iterations, this would

lead to a false

curve on the graph implying it had converged.

A few of the tests had to be run with a reduced terminating tolerance

as the initial tolerance was too small. If the other tests were run

with this tolerance it is anticipated that they would have terminated

with fewer iterations and the time would be slightly less. This

would, however, with a y-axis of the LOG of time make a negligible

difference to the curves.

IHILNINDIS &
et

dZIS dI¥D A (EWIL) DOT

Q143 A (dWI1) 30

01

S0

WNTL

M

(SONDJAS]

29 UdBYg o~ 3Z15
0S S¥ 07 S

=07
5
e
)
N
-
=
LN
(B
L0
()

I INEnRES S
13775484 *

S Do

4ZIS aI¥D A (IWIL) DOT

01901

dWI L

(SAONDJAS)

T8I ININDaS A
7371844 X

— o8 =

dZIS aI¥d A (IWIL) DOT

d215 QId9, A& AW LT 98T

c
@EliC]

IWI L

(SONBJIS)

9 HJHYD - 3ZIS 0149 .
07 8E &C 92 ¥z PZ 9] T 8§ ¥ O
; _ _ _ _ .)
13 TH44EEd X
TYILNINDIc A
!
—
-
m
& N
! MM
3 ™
e 3
=
=
Z
dZIS dI¥d A (IWIL) 90T
c
01907

D ————————————————

713754484 X
TYILNINDIG A

- 30 -

\ 9ZIS QT¥D A (FWIL) 90T

01901

4Z2I1S OIHI A (dWI119071

INT L

(SOND345)

REREIEECFE,
JYILININD3S A

- 3 =

99 Hdby9 - 3715 0163

Uv

gg ZE€ 8¢ ¥T 0T Sl €I

-00

i

HZIS QI¥D A (HWIL) DOT

3

AWNTL

w
m
gp]
@
=
-
o)

ey B3 =

¥ Ww31904d”
C WITg0Hd*

$7IS 4I¥H A (IWIL) DOT

EEE

GId9 A

N

o

(4

WILll D0

0T19@ 1

(SONBJ3IS)

=N

