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Abstract

In this paper we describe an implementation and give performance results
for a conjugate gradient algorithm for unconstrained optimisation. The
algorithm is based upon the Nazareth three term formula and incorporates
Allwright preconditioning matrices and restart tests. The performance

results for this combination compare favourably with existing codes.
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and using equation (2)

£(x) - £(x*) = % £(g? - B;Z)t(i)T et ()
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THEOREM 1: QUADRATIC TERMINATION

It follows that if we minimise f(x) by searching along each conjugate
direction in turn, then each search is independent of the other and must
set Bi — B;. The minimum of a quadratic function is therefore obtained
after searching along n mutually conjugate directions.

This is, of course, the basis of the conjugate gradient approach but if
this were its only property the method would be hopelessly inefficient

on most large problems.

In conjugate gradient algorithms the sequence of directions t(k) and a
seguence of points x(k} are generated iteratively:-
K
x(k+1) _ x(k) " 0‘t( ) (6)

where the step o is chosen so that if the function is the quadratic (1)

(el) would be the minimum along the line (6).

(k+1)

This implies that x is then the minimum of the guadratic function

(1) k)

then x

in the space spanned by [t t( ] and if the initial direction

MESIICY (k)

znd the classic iterative method for generating t is used

o s e 7

Gk—l g(l)]'

{g(l)! Gg(l); LHE N |

this space is the same as that spanned by
From this two well known theorems have been derivedwhich account for the

practical usefulness of the method on large systems.

THEOREM 2
The number of iterations to obtain the minimum of (1) is bounded above

by the number of independent vectors in the set (g(l), Gg(l), n_lg(l)

I B Y.

THEOREM 3
The number of iterations to obtain the minimum of (1) is bounded above

by the number of distinct eigenvalues of G.




2.2 On Nonquadratic Functions

When the function to be optimised is nonquadratic the above framework

can still be used to generate an efficient algorithm. Many codes have
been written for this purpose beginning with that described in Fletcher
and Reeves [2]. In proposing a new conjugate gradient algorithm we
wished to ensure its convergence pattern is based on Theorem 2 and 3 and
not Theorem 1 above.

The structure of an early algorithm based on Theorem 1 consisted of seven

basic steps:

ALGORITHM 1

Step 1 Select x(l), €57 jmax. set k=l,; j=1

Calculate f(l) and g(l)

(k)

Step 2 If || g [l < €y STOP

If J > jmax, STOP

12} & ) g < e, STOP
StEp @ If B = 1 885w g

otherwise set p(k) = - g(k} + bp(k—l)

(k)

Step 4 Perform an almost perfect line search along p
Step 5 Calculate g(k+1), b and set j = j+1, k = k+l
Step 6 If Kk = n set k = 1, to start a new cycle

Step 7 GOTO STEP 2.

In the above algorithm Step 3 generates the set of conjugate directions
on (1) provided the line search undertaken in Step 4 is perfect. In
as far as conjugacy is only defined for quadratic functions the line
search in Step 4 ought to contain a parabolic interpolation to guarantee

that it is exact on quadratic functions.
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< 0 where

E
To obtain a downhill direction we need p(k) g(k)

p(k)T g(k) _ g(k)T g(k) +bp(k_l)T g(k)

The last term is, of course, zero for a perfect line search but otherwise
this condition implies that the search must be sufficiently accurate for

g(k)T g(k)

p(k~1)T g(k) -

(7)

which imposes one limit on the accuracy needed in the line search.

k) .
The form of b obtained immediately in Step 3 by insisting p( ) is conju-
gate to p(k-l), namely
()T (k-1)
b i g o (8)

(k-1)T _(k-1)
p ¥y

can be simplified using the conjugacy and orthogonality properties and

alternative formula are often used.

B ¥he AEEIHLEIGR, GF g

g(k)T (g(k) g(kml))

b = - . (9)
p(k—l)T (g(k) _ g(k—l))

Using the perfect line search condition twice then gives the Polak-
Ribierre [3] formula

g{k)T (g(k) g(k—l))
(k-1)T (k-1)
g g

b = (10)

and applying the orthogonality property then gives the Fletcher Reeves

formula

(k)T (k)
g g

(k-1)T (k-1)
g g

b = (11)

Although both formulae are based on the assumption of a perfect line
search they are frequently used in conjunction with imperfect searches.
There is little conclusive numerical evidenice on which of the alternative
formulae for b is preferable but in [4] Powell argues in favour of the

Polak-Ribiere form (10). He shows that if the conjugacy property
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g(k)T g(knl) = 0 has already been lost, then the Polak-Ribierre form

bounds the angle between p(k) and g(k) and can produce a much more downhill
direction.

Finite termination of the above type of algorithm follows from Wolfe's
theorem [5, 6] provided the line search in Step 4 is such that Conditions
IT and III are satisfied. Condition I is automatically satisfied on the
regular subset of directions with k = 1, as the search is then along the
steepest descent direction.

Cohen [7] first proved that the above class of algorithms are superlinearly
convergent and Dixon [8] contains one proof that there is a region round
the sclution in which it has n step second order convergence.

Most recent research work on the conjugate gradient algorithm has concen-—

trated in four areas:

(1) the avoidance of the implied perfect line search at Step 4,

(2) the avoidance of the steepest descent step at the beginning of each
cycle at Step 3,

{3) the introduction of an improved resetting test at Step 6 so that the
cycle need not contain the full n iterations,

(4) preconditioning the objective function to obtain a better eigen-

structure and hence improved performance.

3. Inexact Line Searches

The proof of finite termination of the conjugate gradient algorithm only
requires that the line search at Step 4 satisfies Condition II and IIT of
Wolfe's Theorem when k = 1. If, however, the direction of search is not
reset regularly to the steepest descent direction then, to retain finite
termination, it is necessary to test the direction of search against
Wolfe's Condition I regularly and in the implementations discussed this is
done at every iteration, and also Conditions II and III are satisfied at

sach iteration.
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The n-step second order convergence property can be retained if a para-

bolic or cubic interpolation is included in the line search and the

accuracy steadily improved so that v the angle between g(k+1) and p{k)
satisfies

| cos v | <k g | (12)
where g(l) is the gradient at the start of the cycle.
As this is till a stringent condition to achieve as || g(l) | + 0,

methods were sought for retaining n-step second order convergence for
more relaxed line searches. In the earliest of these, the gradient

prediction method Dixon [9], this rate was achieved by the introduction

of two additional vectors, thus not greatly increasing the storage require-
ment. The basis of the method was to generate the same set of conjugate
directions that would have resulted from the use of perfect line searches

and to store a correction vector.

(k)

Suppeose that a step d is taken along the direction p(k) to a new

point x(k+1) where the new gradient is g(k+1) but that, if a perfect step

(k)

had been taken, the step would have been d . Then, from the properties

of a quadratic function it can be shown that the following ratios are equal.

I a(k) I (k)T (k) (k)T (k)
e - - P g =P £ (13)
k H d(k) “ (k)T( (k) (k+1) (k}T (k)
P g -g ) P v

This enables us to predict both the point that would have been reached
with a perfect line search and the gradient at that point. Also due to

the conjugacy of the directions generated these corrections are independent

(k+1)*
a

H*
- g(k+1)

and we can define x the point and gradient that would

hzve been reached after k perfect line searches

- g(k+l)* _ g(k+1) _ w(k+l); X(k+1)* _ X(k+1) B Z(k+1)
where w(k+l) = w(k) - (e~1)(y(k}) w(l} =0 (14)
z(k+l) = z(k) - (eal)(d(k)) z(l) =0



p(k)T g(k+1)

p(k)T y(k)

and 6-1

The prediction g* is then used in the conjugate gradient algorithm to

(k-1)

calculate p with y in the formula for b being replaced by

k) * _1)* *
g(ﬂ) - g(k 1) ; On a quadratic function if g{k) = 0, this indicates

k)*

tﬁat with perfect line searches x( would be the solution and that a
step z is necessary to obtain the solution. On a nonquadratic function
it seems logical to include a line search along z if such a situation
arises.

&n alternative method for generating conjugate directions without

performing accurate line searches was given by Nazareth [10].

Namely :

= -y i eEnnete e + (k=1)
L (KT y(k) GO LI llet)

t

(15)

(k+1)

does not depend (apart from

(k)

and in this form the new direction t
a scalar muliplier) on the length of the step along t The same

set of conjugate directions are therefore generated for arbitrary step

sizes and the correction step z can be calculated as before. Again two

g k-1 5

additional vector stores are needed t( ) and z and again the value
LAy . s .

of g can be introduced to indicate when the step z would predict the

solution.

4. Restarting Procedures

In the early algorithms the restarting strategy was usually to restart

whenever K = n or n+l. When n is very large and the number of clusters
of similar eigenvalues are very small this can be very inefficient. L&
is therefore often felt desirable to reset more regularly. If the

gradient prediction algorithm is being used then it becomes natural to

(k)* (1) ‘s
reset when || g | < € |l & || as this implies that enough
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iterations have been undertaken to approximately minimise a quadratic
function closely related to nonlinear objective function.

Powell [4] has suggested restarting whenever

8T gD o 2™ (16)

The left hand side would be zero if the conjugate gradient algorithm

were working with perfect line searches on a quadratic function. Its

size is therefore an indicator of the nonconjugacy of the search directions

and so is an indicator that the cycle should be terminated.

o ; k-1)T k
Other measures could be similarly used, for instance, t( 1) y( ) should

he zero for conjugate directions and is available to the user of
Nazareth's algorithm without additional store.

1t also seems desirable to restart if the direction is not effectively
downhill, Powell suggests restarting if

(%) LT ) (k)

< -o0.8 |lg li? (17)

=12 e "HYX

is not satisfied, while in +the codes reported in the tables the cycle was

aiso restarted whenever

(k)

g(k)T NN TR I e, = 0.001 (18)

<eq i

i.e. whenever Wolfe's Condition I was not gatisfied.

5. Arbitrary Starting Directions

When it is decided to restart an algorithm it is questionable whether it
. . (v (1)

is always advisable to restart by setting p = - g .

Beale [11] analysed the modifications that arose in the generation of
conjugate directions if this assumption was not made and showed that

conjugate directions were still obtained if

Jer1) ) s

where (k+1)T (1)
b, = Y
1 (T (1)
t y

(20)



This approach allows a set of conjugate directions to be generated

(1) (1}

starting from any initial direction t , however, the fact that t

k
remains part of the formula for t( +1) throughout the cycle may be

undesirable. Although the storing of t(l) would enable the conjugacy

check

t(l)T g(k+1) = 5 (21)
to be made and used as an effective restarting strategy.
An alternative way of allowing an arbitrary starting direction was
suggested by Allwright [12] who introduced a change of variables
Lz (22)

LLT.

X

Il

where H

Il

Then a guadratic function

F(x—x*) % (xux*)T-G(x—x*)

is equivalent to

Flz—z*) = % (z—z*)T LT Gi(z—z*)
T
and VFZ = L~ GL(z-z*)
= LT Glx—x¥) = L. (23)

which when transformed back into x space becomes simply Hg.
If the conjugate direction method iz applied to make the directions
conjugate in the z plane then the directions in the x plane are simply

p(l) e Hg(l) (24)

p(k+1) _ (k+1) _ Hg(k+l) . (k)

£ bt (25)

g(k)T Hy(knl)

where b = o1)T 1) (26)
p Hy
; ; (1) ()
There are many alternative ways of selecting H so that p = — Hg
has any preselected value, ph, one simple formula is to set
(1} (1)T 5. P
H=1-82__8 g3 (27)

g(l)T g(1) phT g(l)




o PG =

but this almost certainly not the best choice.
Indeed, if the Nazareth three term formula (15) is used to generate the
set of directions, then the directions generated are conjugate for an

(1) (1)

arbitrary initial direction t , Nocedal [13]. However, if t is not
the gradient direction t(k) can become zero away from the minimum.
This implies that provided the algorithm is restarted in the unlikely
event that

e e g (28)
we can use the Allwright matrix to precondition the problem to improve

the eigenstructure of LTGL and thus improve convergence. This was not

however included in the algorithm when the numerical results were obtained,

the matrix given by (27) being used.

6. The New conjugate Gradient Algorithm

The new conjugate gradient algorithm proposed combines the 3-~term conju-
gate direction formula proposed by Nazareth, with a restarting procedure
and includes a preconditioning matrix. The line search chosen is inexact
but incorporates a parabolic interpolation and terminates at a point that
satisfies Wolfe's Conditions ITI and III. If any direction is generated
that does not satisfy Wolfe's Condition I the method is reset to ensure
finite termination to a region around a solution defined by ng < &,

To be precise:-

The proposed method generates the new search direction by the following

formula,
k k-1 k-2
t = - Hg + bkt + bk—lt (29)
where
K g el
b . B S k >1 (30)
k-1 tk—l H yk—l
kT H K
B, =&t (31)
k k



and H is a positive definite matrix. Tests are reported for two alter-

native values of H:-

(i) H=1
g gT P DT
o h~h h'h
(ii) H=1I - R (32)
En8n  Ppép
1 x : X
where g = g{ ) and by, is the step direction before resetting k.
The algorithm is restarted whenever either
(1) k>N +1 or
i
T k T k k
(2) (ph Hy )% > 0.2(ph H ph)(y Hy) - Test RST - (33)
(3) Wolfe's Condition I does not hold,
k
(@ 1 Il <e 1l &1 (34)
K k
G I TR N P (35)

o
The second test (33) checks whether the new directionis reasonably
conjugate to the initial steepest descent direction in the frame being
used.

The matrix H is updated at the restart of a cycle if

T T T
ghph < - Cl//(phph)(ghgh) C1 = 0.001 (36)

i.e. if the resulting matrix would be positive definite.
The structure of the algorithm based on the above philosophy consists

of the following steps and at any stage requires 13-N-vector stores for

k k-1 k k-1 k-2 k k-1 k k
Z, g, g PR P - i b sy ¥ 3 ¥ i B gh, ph, w and a work space.

. k k-1
Let us assume the following notations ¥, = vk+1, voEV, v q = v ,

etc., where v is any given vector.

ALGORITHM 2: OPCG

Step 1  Select x, j =0, ITER = O

Step 2  Evaluate g 4 g, =+ g_i, By = — &4

I
1
o
jal
Q
o

Il
s
~
]

3

{ile]

Set t° = - g_ H

l’
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Step 3 Perform an approximate line search, d_ = at
o} o

X, = X_+ do, jter = iter + 1, j=J +1
E | = &,
L =
Evaluate g g(xl)
for j » 2 if the line gearch is along the correction vector z

then do one of the following:

. T g, T
(1} FgEp 28 (p,py,) (gyey,) then g0 to Step 13

T
g g PP
(ii) Update the matrix H=1 - ﬂ%—h - —%—ﬂ—
ghgh phgh
or use matrix H = I and continue.
Step 4 Calculate g,
2
If || - it < €5 stop

if iter > iter max, stop.

Step 5 Calculate

tO = = Hyo + 8t~2 + Yt_l
2, = z_, + (G-I)t_l .
z = W =0 if j=1
w =w . + {(e-1)y =& e
o} -1 -1
* = p—
g5 25 Ys
gﬁ a4
where 0-1 = - —% j =1,
yo t--l
y_HY
g = g = §:-5 2
y_l H t_2
0 4 = 0l
T
_ Yo H Yo
LR H t
y0 -1




T
Step 6 If C1 <t 1.1l g Il > -togo then go to Step 8

z . T
For j > 1 if (pEHyO)2 > O.E(thph)(yEHyo) then go to Step 8

£ 0l gt i< g |l or It < C Il g |l then go

to Step 8
The first of these two conditions is Wolfe's Condition I while
the others are tests (33), (34) and (35) mentioned above.
Step 7 If j >n + 1 go to Step 8
If j <n go to Step 3.
Step 8 Test 2 for Wolfe's Condition I. If satisfied go to Step 11.

Step 9 Set gh = F. 5 ph = 25 This effectively updates the matrix H.

o] @]

T T T : :

> .e.

Step 10 If gp, > Cl/(phph)(ghgh] then go to Step 13 (i.e. H is
unsatisfactory), otherwise to go Step 5 with j = 1.

Step 11 Set to =2, 8 = go, By = %, a-= L.B, J = @.

Step 12 Go to Step 3.

Step 13 BSet gh =3 " ph = twl, J 0. This effectively updates the

matrix H.

T T T :
> - s
Step 14 If g, Py, ClJ/(phph){ghgh) then go to Step 15 This tests

if H is acceptable.

Step 15 BSet to - B 5 = 0, g, = = 8, P = 8- This effectively

o]
sets H = I. Go to Step 3.
The line search at Step 3 consists of first performing a parabolic inter-
polation using the values of the function and its derivative at the
starting point and the function value at an offset point. If the pre-
dicted function value does not satisfy Wolfe's Conditions II and IIT,
then the Armijo [14] procedureis adopted based on that step, i.e. the
predicted step 1s halved or doubled until

F(% 4 88) < £lx) + laf! (x)k

f(x + 2at) > £(x) + .2af'(x)t.
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7. Numerical Results

7.1 Comparison Algorithms

In order to justify proposing a new conjugate gradient code at this time

it was felt necessary to demonstrate that it was indeed an improvement

over existing available codes. We therefore chose for comparison purposes

first the two standard Harwell routines VAO8A and VA14A [4], second the

quoted results in Buckley and Le Nir [15] and also the two earlier Hatfield

Codes CONGRA, Dixon [6] and CONLS, Dixon [9].

Results for four versions of the new code are included for completeness,

with and without the preconditioning matrix H and with and without the

restart test (33), as it was felt of interest to indicate the effect of

these innovations.

For each algorithm the amount of computational effort is measured in terms

of the effective

In all cases the

function evaluation (EFE)s given by EFE = NF +n NG

number of unknowns

number of function calls

= number of gradient calls.

termination criterion was set at

ng < g = 1lE-4

and the constant C., in Wolfe's Condition I was set at 1E-3.

1

7.2 Test Problems

The fellowing are the details of the test functions used.

1. PWSING (POW n)

n/4
I(x)

j=1

(0)

(

2 2
L [(X4j—3 + 1Ox4j_2) + 5(X4j—l xdj) +

" M
-2 )% 10(x4j_3 = de) ]

Xaj-2 T “Faja1

T

(85 =ls O; 85 wawm )




2. EXTROS

n/2
I(x) = & [100(){ . = oh
i=1
_}_((O) = (_1'21 ll
3 TRIDIA

I(x) = lOO(xi

6. TRIGNM n

I(x) = ? Ll

i=1 - j=1
A = §. . B. . &= 1§ + 1
13 13 1] 1]
0 if 1 # j
6i. = 2(_(0) = (%y %, )
J 1if i = j
7. BOXFUN
n/2 10
I(x) = ; ? [exp(—xzj_l.ti) = 5exp(—x2jti) = exp(—ti)
j=1 i=1
2
+ 5exp(—lOti)]
i (0) =
sy — z = ( 0, 5, 0,
b= o i=1, 2, , 10 x 5,
8 EXP2
10 ~xlzl —x2z1 —zl -10z
I{x) = 2 (e - Be - e + Be )2
fet],

k8]
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9 EXP3
10 ~xlzl ~X52, -z —lOzi
I(x) = = (e - x.e - e + Be )2
3
i=1
where z, = t/10 (0} {1y 2x 1)T
10. EXP4
10 ~X.Z, -X,. 7, -z, -10z,
171 2 i i
I(x) = ¢ (x_ e - x e - e + Be
3 4
F=]
where z. = /10 o) i1, &, 1, 1)T
11. wWCo0oD4
T s — x2)2 — 2 - x2)2 ax
I(x) IOO(x2 xl) + (1 Xl) + 90(x4 x3) + (1 x3)2
10. - 2 - 2 . - =
+ l{(x2 1)2 + (x4 1)2} + 19 8(x2 1)(x4 1)
0]
L0 _ (-3, _1, -3, _l)T
12. NONDIA
n
Tluc) = w22 - 2
(%} z [lOO(xl xi) + (1 x2) 1
i=2 .
0
x( ) = (=1.2, 1, ...)T
7.3 The Numerical Results
The numerical results have been presented in two tables. In Table 1 the
results are for the classic small dimensional test problem. In Table 2
results are presented for some larger dimensional problems. This latter
set of results are the more interesting. Surprisingly the results without

the preconditioning matrix H (i.e. OPCG 2 and 4) are better than those with
it and this led to the discovery that the 3 term conjugate gradient formula
generates conjugate directions for any given starting direction t° [reported
in Dixon [16] and previously in Nocedal [13]]. As the choice of H used
only had the effect of making the first direction the steepest descent
direction in the transformed space, it is no longer necessary for this

purpose and could be chosen to have other desirable properties. The results
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with the reset test were usually but not universally better than those
without and it has been retained; the code OPCG2 being adopted as the
definitive version. On comparing the results of this code with those
of other codes on the large dimensional problems in Table 2 it cbviously
well outperforms VAO8A and VAOl4A and the results are also an improve-—
ment on those reported in Buckley and Le Nir [15]. On the less inter-
esting small dimensional problems the situation is less clear. Out of
interest an algorithm was written combining the Fletcher Reeves conjugate
gradient formula with the line search strategy incorporated in the new
code. This is reported in the tables as FRCG and, as expected, the new
code (OPCG2) also regularly performed better than this modification,

though this simple code did surprisingly well.

8. Conclusions

In this paper a modified form of the conjugate gradient algerithm is
motivated, having desirable restart properties that outperforms a wide
subset of current conjugate gradient codes. The new code contains
provision for a preconditioning matrix that ought to lead to a further

improvement in performance.
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BOX2 |BOX4 | EXP2 | EXP3 | EXP4 | ROS2 | ROS8 | WOOD4 | POW4 TRIGNM@J
OPCG1 - 76 - - - 386 90 - 127 68
OPCG2 81 70 59 84 143 170 37 F4 119 56
OPCG3 - 136 - - - 386 90 - 127 53
QPCG4 81 70 59 67 140 170 37 F4 126 53
VA14A 36 80 45 92 120 195 F1 F2 345 44
VAO8A 63 280 156 147 690 276 300 640 365 170
CONGRA 272 620 84 600 | 1251 366 99 390 446 1035
CONLS 80 690 62 134 362 170 247 11680 472 1060
FRCG 178 502 104 87 111 4395 F3 i} 1111 104 81
Table 1. Small Functions
F1 +the run terminated with f = 0.018 (f* = 0)
F2 +the run terminated with £ = 1.6 (f* = 0)
F3 the run terminated with f = 1.93E-3 (f* = 0)
F4 +the run terminated with £ = 7.8, a stationary point which satisfies
the convergency criteria.
POW EXTROS TRIDIA NONDIA{ TRIGNM
60 80 10 20 10 20 30 10 40
OPCG1 2111 | 6646 974 | 4111 119 439 831 - 225
OPCG2 1688 | 2055 393 801 119 439 831 702 225
OPCG3 2183 | 1566 782 2326 119 439 831 - 225
OPCG4 2122 | 2964 4541 888 119 439 831 708 225
BLALN 7991 | 5913 6711 1281 209 819} 1891 858 -
VAL14A 2623 | 3483 671 1281 297 819 | 1643 935 410
VAQBA 9577 {16443 957 | 2100 440 {1029 | 2015 1100 | 4100
FRCG 3906 | 7463 1362 2511 119 439 863 F5 224
o
Table 2. Large Functions

S the run terminated with £ = 1.8

(£x =

0)
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Algorithm Code

OPCG1 = with preconditioner H and RST

OPCGZ = without preconditioner H and with RST

OPCG3 = with preconditioner H and without RST

OPCG4 = without preconditioner H and without RST

BLALN = Buckley and Le Nir [9] method

VA14A = Harwell subroutines

VAO8A = Harwell subroutines

CONGRA = Fletcher/Reeves [10]

CONLS = based upon Hestenes and Stiefel but incorporating the gradient
prediction method

FRCG = Fletcher/Reeves with the new line search
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