Numerical
Optimisation

Centre

TECHNICAL REPORT NO. 127 MAY 1982

THE IMPIEMENTATION OF A PARALLEL VERSION OF
PRICE'S (CRS) ALGORITHM ON AN ICL DAP

by

Paul G. Ducksbury

The Hatfield Polytechnic

P DOCRSSORY

THE HATFIELD POLYTECHNIC

NUMERICAL OPTIMISATION CENTRE

THE IMPLEMENTATION OF A PARALLEL VERSION OF

PRICE'S (CRS) ALGORITHM ON AN ICL DAP

by

Paul G. Ducksbury

TECHNICAL REPORT NO. 127 MAY 1982

Abstract

This report describes the way in which a parallel version of
Price's (controlled random search) algorithm was implemented on an
ICL Distributed Array Processor (the DAP situated at Queen Mary
College, London) for the solution of multi-extremal global optimi-
sation problems; together with the corresponding results that were
obtained from it.

The author would like to thank the SERC for their support and the Queen
Mary College DAP Support Unit for permission to use their system.

i [The Problem

The problem of global optimisation is as follows:

where S = Ex: a; <x; £ b,

Assuming that the function F(x) is non-convex and has more than one local
minimom, then the problem is to isolate the point x* with the least
function value (which is by definition, the global minimum).

An international study comparing the relative efficiency of a number
of programs for the solution of the global optimisation problem is reported
in Dixon & Szegd [5]. That study indicated that most of the efficient
codes are based on probabilistic principles and that the heuristic CRS
algorithm proposed by Price [6] was one of the most successful. He has
recently proposed a simplified version {7] and this was chosen for imple-
mentation on the parallel system.

The probabilistic method of solution relies on the following
assumptions
if we have a finite number of points chosen at random and uniformly

distributed in the region S, then if A is a subset of S with a measure m

m(A

and p(4,N) being the probability that at least one point of a sequence of

such that

N random points lies in A,

then lim p(4&,N) = 1
N—> 00

The heuristic method then aims at improving the Dbest points located in

the random search.

20 System for the implementation

The ICL-DAP is a single instruction multiple data machine (sIMD)
having a total of 4096 individual processors (arranged in a 64 x 64 matrix)
each one having its own 1 bit full adder, 1 bit accumulator, a carry
register and what is known as an activity switch used for "swifching off"
a particular processor if need be.

The total store of the machine is at present 4096 bits per processor,
and a typical single length matrix requires 32 bits, one bit per plane,
allowing approximately 120 matrices of length 32 bits to be held. The

DAP is connected to an ICL 2980 host computer at Queen Mary College.

3, Language for the implementation

The language used on the DAP is the DAP-Fortran language which is an
extension to the existing ICL 2900 Fortran, the extension being a set of
51 built-in aggregate functions for manipulation of vector and matrix
values. Details of the languages and the supporting system can be found

in technical publications [1, 2, and 3].

4. Price's algorithm for a DAP

The sequential algorithm of Price has been previously modified for
running on an ICI-DAP for small values of n, as is described in Dixon &
Patel [4]. The main features of the modified Price's algorithm are
contained on the flow chart (Fig. 1).

Briefly what happens is this, 3n x 4096 points are generated over
the domain 8 and their function values determined. (3n points allocated
to each processor) the largest valued n points per processor are then
rejected and the overall 4096 remaining largest values are chosen, one
being placed in ‘each' processor.

In order to generate new trial points Pi we choose 4096¥n points at

random (n points coming from each of the processors) from the remaining

set of 2n*4096 and together with the minimum poing fL’ determine the

centroid followed by the new trial point matrix P.

ives
Suppose we have chosen n points R,, R3, e Rn+1 at random and
R1 = 1L then
n
&=(> B)/mn
=
and
P=2G-R
- = =+l

If the new points generated are within the domain S then we evaluate
F(P) otherwise we must repeat by choosing more points at random, for those
which are not within S, we also repeat from this stage if F(P) is worse
than the existing point.

At this stage (after one or possibly more iterations) we have a full
sef of 4096 points which are contained within the domain S and whose
function values are less than the corresponding maximum function values.
It is these improved values that are used in the replacement process and
the test for termination is carried out.

The termination criterion examines the 3 smallest values of the
function value I1, 12, L3 such that I1 < I2 < L3 then if |I1 - 12| <
and |12 - 13| < and |L2 - 13| < € (&= some tolerance) we stop,
otherwise repeat by selecting the 4096 new largest values etc.

The algorithm also contains as a safety measure an upper bound on

the number of iterations (in this case 40 --purely an arbitrary figure).

_4...'

1 l Choose qN points T
| g = 3n, N = 4096,
Lf ind function values
2 Reject largest n on each
processor
3 Select N points with largest
£ value fMA , pPlace one in each
i
processor
4] Find minimum value f ; and place
coordinates in each processor
. N
1— T s W it st e
% [For each processor choose n points
n] at random from set 2n (from each
| Lprocessor)
6 -
| Determine G and P
| =% - » o~
T
LN P. €S
s
8 \LY
Evaluate T
B,
N i
o
Is fP. < fM.'
i i
e T
9 2 a o
Replace Mi by Pi
10 g i R
Replace fMi by fPi

A\

" | TERIINATION]

12 MsTop [

Figure 1

PARALLEL

PARALLEL

3n PARALIEL
STAGES

PARALLEL

PARALLEL

PARALIEL

5. Initial results

The initial results obtained from this program were rather
disappointing when compared with the sequential algorithm,(the sequential
one being run on a DEC system 10, 1091 here at Hatfield) as can be seen
from Table 1 (sequential vs. 'old' parallel). It was the case that
three sections in the program had needed to be coded gsequentially and
these sections were pinpointed as being the main time consumers. The
available diagnostic facilities on the DAP allow for the timings of
individual sections of code (or even individual statements) to be recorded.
They were as follows:

(i) Step 3 on Figure 1, when choosing the overall 4096 largest function
values it was necessary to code it sequentially, namely, find the
largest value, mask it out, then find the next largest, etc.

(id) Step 5 on Figure 1, when choosing n points at random for each
processor it proved to be extremely difficult to find a method for
doing it in parallel, since it was required to choose n points at
random, avoiding the points previously rejected and keeping track
of where the chosen points had come from (eventually the coordinates
were recorded namely, row, column, plane).

(iii) Steps 9 and 10 on Figure 1, these two sections formed the third
major sequential point in the program. When replacing the points

Mi by new points Pi and similarly fM by T they had to be replaced

i
in the positions from which they initially came.

P g
i

These three points in the program were modified by means of changes to the
algorithm, resulting in the new version of the parallel algorithm to be

described in Section 6.

6. The new Price's algorithm for a DAP
The algorithm described in Section 4 was modified to remove the
three main sequential sections of code. The main details of the new

algorithm are shown in Figure 2 but briefly they are as listed below:

(1)

(i1)

(iii)

(iv)

(v)

(vi)

After rejecting the largest n points on each processor we ‘compact
down! the matrices MI and FMI (holding the coordinates and function
values of points respectively) by removing the rejected values,
this means we no longer need to take care to avoid them,

Tnstead of choosing the overall 4096 maximum values, we Now select
4096, but the maximum from each processor, which can be done quite
simply in parallel.

Instead of choosing n points at random, one from each processor, we
now choose n matrices at random. This means that it is now no
longer necessary to record the positions of the randomly selected
points for later reference, since they have all come from one of n
matrices.

Since we are now choosing whole matrices at random rather than
individual points, then the replacement of old points by new ones
is a lot simpler, i.e. we can generate a logical mask, containing
TRUE values, only at positions where the new point is contained
within the domain S AND the function value fP, is less than fM.'
This mask then being used in a series of simpie agsignments. ;
When we compacted down the two matrices there was space left over,
n planes in FMI, n2 in MI, this space is now used for holding the
centroids, new trial points, maximum values and the function values
of new trial points.

The random number initialisation routine and generator were also

changed to faster but adequate routines.

1 Choose gN points at random
and find £ values
g = 3n, N = 4096
v
2| Reject largest n on each
processor
\/
5 Compact down the matrices MI
and FMI
(Remove rejected values)
N 7
4 Select N points which have the
largest f= values (one from
each processor)
1'%
5 Find minimum point fI.
6 X
Choose n matrices at random
from the set 2n
A4
7 Determine matrices
G then P
Y
. Replace Mi‘s by new Pi‘s and
fM. 's by new fP. 'g if and only
i i
if points P, C 8 and £, <Ey
51 i
Y
<N 91 rervTNATION
\
10 STOP

Figure 2

PARALIEL

PARATIEL

PARALIEL

PARALIEL

2n PARALLEL STAGES

PARATLEL

PARALIEL

7. Final results

The results of this new version of the algorithm are also displayed
in Table 1 (sequential vs. "new' parallel). This time a positive
improvement can be seen compared with the sequential algorithm and an
even greater improvement on the 101d' parallel algorithm.

A direct comparison of the times for the sequential and the new
pérallel yields the improvement factor which can be seen to range from
3.2 up to 68. This considerable range can be explained by the fact that
the lower improvement factors came from functions which had just one
global minimum, whereas the larger factors came from the functions
possessing multiple global minima. The best example is probably the
SHUBERT function which has 18 global minima; the new'! parallel algorithm
picked up 11 of these minima in one run, whereas the sequential algorithm
required 10 runs to pick up these same 11 minima.

Tt can also be seen that the number of parallel function evaluations
needed has been drastically reduced in most cases to single figures but
at the most to just 14.

Table 2 contains the numeric results of the programs and Table 3% the
actual values (obtained from [5] and elsewhere). It can be seen that
there is a reasonable comparison in all of the test cases except for
SHEKEL's function where the algorithm only managed to locate the
approximate position of the global minima, this was then allowed to run
for 40 iterations and also 8 different random sequences but still failed
to improve upon the quoted figure.

Taking the percentage differences of the values we find that the
results for the sequential algorithm were within an average of 0.65% of
the actual values and for the new parallel algorithm within an average
of 1.54% but if we include the results from the SHEKEL function then

this figure worsens to 4.57%.

8. Conclusions

Despite the fact that the numeric results for the new algorithm
were very slightly worse than those of the sequential algorithm
(4.57 - 0.65 =~ 3.9%) there must be an advantage in a considerable
reduction in the number of parallel function evaluations carried out
(particularly on functions for which a large proportion of the time is
spent in the function evaluation routine) thus leading to a reduced
time,

The CRS optimisation method described in [5] on which this method
is based is designed for thoroughness of the search rather than speed
of convergence and where possible the global minima discovered could be
refined using faster methods.

The algorithm is only suitable for small values of n, namely those
in the range

2L L5
The restriction on larger values is one of the available storage space.
A possible alternative/éziéer dimensional problems would perhaps be to
reduce the number of points generated to say 2n per processor but this
would later limit the choice of the matrices in a random way.

The program is now successfully running on an ICL DAP. The two
versions of the implementation illustrate an interesting property, namely,
the algorithm (or any algorithm) must be designed with the available
facilities in mind, not necessarily the detailed hardware facilities but
rather the software ones, i.e. the built—in DAP functions and the best
way in which to use them.

Hence no matter how efficient the machine is, a number of sequential
code sections (as is the case with the initial implementation) in the
program can totally destroy any possible advantage which comes from using

the parallel machine.

= 40 =

| z
FUNCTION SEQUENTTIAL NEW PARALLEL OLD PARALIEL TMPRO o
Time (s) N eval. . Time (s) N eval. | Time (s) £ eval. | Note (3)
SIX HUMP 0.36 " 88 | ’
CAMEL BACK | 0.81 | 798 | 0.093 7 95.6 29 x 12.5
(2 global P S N
ninima) 1.17 S 1086 Note (1)
’ I
BRANIN 0.47 1 360
(3 global 0.97 | 654 0.118 8 25.7 9 x 26.8
i) 1.73 | 1024 Note (1) | 25.8 9
547 | 2038 Note (2)
GOIDSTEIN & | 0.45 | 481 | 0.13 8 37.78 12 x 3.5
PRICE (1 '
global mini-
mum) i
HARTMANS 0.88 503 0.276 11 67453 13 ¥ 3,2
N =3 (1 i
global |
minimum)
N =6 : INSUFFICIENT STORE
SHEKEL | |
(1 global ;
minimum) f
m=5 5.89 | 2732 0.453 14 NOT RUN x 8.6
Note (5) :
n =7 3,82 | 2423 0.55 14 NOT RUN x 6.9
Note (5)
m = 10 4.%1 | 2567 0.69% 14 NOT RUN x 6.2
Note (5)
?HUBERT 2-D | average | average 0.233 8 NOT RUN x 68
18 global . .
aiinine 1.58/min 995 Note (4)
total
15.8
Note (4)
NOTES TABLE 1

Two runs were needed to locate 3 global minima

(3) Improvement of new parallel as compared with the sequential

(4) The parallel algorithm picked up 11 mimima in one run hence the same 11 minima
from the sequential version were used for the comparison (these 11 being picked
up in 10 runs)

(5) For this particular function the approximate location only was located for the

global minimum.

13 Multiple global minima were identified in one run

& T

FUNCTION SEQUENTIAL NEW PARALIEL OLD PARALIEL
SIX HUMP f =-1.0312 @ f = -1 030088 @ | f = -1.03035 @
CAMEL BACK 0.09047, -0.70548 &| 0.09524, -0.7262 & | ~0.07846, 0.72161
(2 global -0.08851, 0.71195 -0.07299, 0.71892 | Note (1)
minima,) ;
BRANIN f = 0.39797 @ f = 0.401413 @ | f = 0.40254 @
(3 global 3.14294, 2.2821 & 3.16611, 2.23063% &, 3.14%31, 2.272 &
minima,) 9.43796, 2.4653 & | 9.41012, 2.5422 & | 9.3941, 2.477 &
-3.1364, 12.2577 -%,12068, 12.12934 -3.1673%4,12.375
GOLDSTEIN & | £ = 3.00008 @ f = 3.041037 @ f = 3.037%69 @
PRICE (1 0.00061, -0.99986 0.01146, -1.00212 0.010315, -0.99176
global minima)
HARTMANS f = -3.86223 @ f = -3.85239 @ f = -3.85532 @
N =3 0.12838, 0.55814, 0.12175, 0.57061, | 0.1454, 0.5416,
(1 global ’ 0.85407 0.85807 0.85097
minima) :
SHEKEL N = 4 £ = -10.15269 @ f = -4.85933 @]
(1 global 3.99941, 3.99815, 4.01411, 3.96868, | NOT RUN
min) 4.00085, 3.99975 3.74164, 4.21136
., = 5
m="7 f = -10.4028 @ f = -5.106936 @
4.00118, 3.99993, 4.01411, 3.96868, NOT RUN
3.99974, 4.00025 3. 94164, 4.2115%6
m= 10 f = -10.5362 @ f =-5.2288 @
4.00182, 3%.99978, 4.01411, 3.96868 NOT RUN
3.99978, 3.99994 3.74164, 4.21136
SHUBERT 2-D |f = -186.38818 @ f = -186.5548
~T:0817, -~7.7046 -7.09226, -7.7066
| -1.4555, -=0.80274 -1.40794, -0.80522 NOT RUN
| 4.8788, -7.06644 4.88029, -7 0847
! -0 785, 4.8523 - -0.79988, 4.89147
| -7.7083, -T7.0835 ~7.66859, -7.0571
4.8663, =0.7934 4.84246, -0.8475
-1.42505, 5.4828 -1.4149, 5.42207
- -7.7083, -0.8001 -7.76933%, —-0.79236
| =7.7077, 5.483 -7.66386, 5.43725
; -0.802, -=7.7052 -0.80595, -T7.64545
5.4828, 4.8579 | 5.41464, 4.81433
TABLE 2
NOTE

(1) Only one of the global minima was located, the random sequence was
changed several times

e S v

FUNCTION ACTUAL VALUES i
STX HUMP f = -1.0316285 @ %
CAMEL BACK 0.0898%, -0.7126 and
-0.08983, 0.7126
BRANIN f - 0.397887 @ -)
3,14159, 2.275 and
9.42478, 2.475 and
-3.14159, 12.275
GOLDSTEIN & f=3.0@
PRICE 0:06; —%:0
HARTMANS f = =-3.86278 @
N=3 0.11484, 0.555515, 0.852551
SHEKEL N = 4 f = ~10.1532 @
m=3 4.0003, 4.00016, 4.00002, 4.00011
m=7 f = =-10.4029 @
4.00052, 4.00078, 3.99943, 3.99957
m = 10 f = —10.5564 @
4.00066, 4.00054, 3.99955, 3.99948
SHUBERT 2-D f = -186.73091 @

-~7.0835, -T7.70831

-1.42513,

4.85805,
-0.80032,
-7.70831,

4.85805,
-1.42513,
-7.70831,
-7.70831,
-0.800%2,

5.48286,

-0.80032
-7.0835
4.85805
~7.0835
-0.80032
5.48286
-0.80032
5.48286
~7.70831
4.85805

TABLE 3

= 19 =

References

'"DAP introduction to Fortran programming, ™ Technical Publication
TP 6755, ICL Putney, London SW15.

"DAP-Fortran Language," Technical Publication TP 6918, ICL Putney,
London SW15.

"DAP - Developing DAP programs," Technical Publication TP 6920,
ICL Putney, London SWi15.

Dixon, L.C.W. and Patel, K.D., "The place of parallel computation
in numerical optimisation II, the multi-extremal global optimisation
problem," Technical Report 119, Numerical Optimisation Centre, The
Hatfield Polytechnic.

"Towards global optimisation 2," edited by L.C.W. Dixon and G.P.
Szegl, North Holland Press, 1978.

Price, W.L., "A heuristic CRS algorithm," in Towards global optimi-
gation 2, edited by L.C.W. Dixon and G.P. Szeg8, North Holland
Press, 1978.

Price, W.L., "4 new version of the controlled random search procedure
for global optimisation," Technical Report, Engineering Dept.,
University of Leicester, 1981.

