Computer Physics Communications 37 (1985) 187-193
North-Holland, Amsterdam

187

FINITE ELEMENT OPTIMISATION ON THE DAP

L.C.W. DIXON and P.G. DUCKSBURY

Numerical Optimisation Centre, The Hatfield Polytechnic, P.O. Box 9, College Lane, Hatfield, Herts AL10 94B, UK

In this paper we report on our experience solving steady two dimensional sets of nonlinear simultaneous partial differential
equations on the ICL-DAP computer. Results are reported for the heat conduction equation, a nonlinear pde in one variable
and for the Navier Stokes equations. In each case the parallel implementation of finite element optimisation on the DAP solved
coarse grid problems much more rapidly than the sequential code and also enabled much fine grids to be used.

1. Introduction

Finite Element Optimisation is an approach
that enables general linear or nonlinear partial
differential equations to be formulated and solved
by an iteration process that is guaranteed to
terminate in a finite number of iterations. If the
system of partial differential equations is two-di-
mensional and steady then the method is readily
implementable on the ICL-Distributed Array
Processor. In this paper we will concentrate on
such problems.

In finite element optimisation any set of simul-
taneous partial differentail equations are first con-
verted into an equivalent optimisation problem.
The solution of partial differential equations can
be converted into an optimisation problem in two
different ways. If the partial differential equations
are self-adjoint, then they can be derived from the
minimization of a functional subject to certain
boundary conditions by using the calculus of vari-
ations. We will term this the variational approach
and when solving such problems it is natural to
revert to the underlying functional optimisation
problem. For non-self-adjoint systems such a func-
tion does not exist, but it is possible to create a
family of functional integrals whose minima corre-
spond to the solution of the problem by taking
weighted least square integrals of the equations.

In this paper we will first describe the basis of
the finite element optimisation approach by show-
ing how it would be applied to the Navier Stokes

equations. We will then discuss how the method is
implemented on the DAP by first considering a
linear variational problem — namely the solution
of the heat conduction equation. Then a simple
nonlinear problem will be formulated by the least
squares approach and solved using both the
Fletcher-Reeves conjugate gradient method and
the truncated Newton method on the distributed
array processor and finally DAP solutions of the
Navier—Stokes problem will be discussed.

2. The finite element / optimisation approach

Finite element optimisation has been developed
as a general method for solving sets of nonlinear
partial differential equations. If the equations are
steady and two dimensional it is particularly easy
to implement the method on the ICL-DAP so the
method will be illustrated in this paper using the
two dimensional steady Navier-Stokes problem.

Let Ox;, Ox, be two orthogonal axes in the
two-dimensional space and let u be the compo-
nent of velocity parallel to Ox; and v the compo-
nent parallel to Ox,. Similarly let p be the pres-
sure at any point in the flow and let R denote the
Reynolds number. Then the flow of incom-
pressible fluid is governed by the equations:
du du odp 1 2

ox; Ydx, 9x, R"“

(1)

0010-4655/85/$03.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

188 L.C.W. Dixon, P.G. Ducksbury / Finite element optimisation on the DAP

ov v dp 1 _,

“ox TPk, Ak, TRV (2)
du dv

and a_xl+§;—2_‘0. (3)

A flow problem is completed by the specification
of an appropriate set of boundary conditions.

To convert this problem into a first-order opti-
misation problem of the type normally treated in
the calculus of variations we introduce additional
variables and use seven field variables

A=u _du _ou
9x; 0x, @
dv av

D—-U E_?)x_l 1:'—8hx2

and

P=p.

In terms of these variables the Navier—Stokes
equations become seven first-order equations

q=AB+CD—%(§%+§%) §£=0,
q=AE+DF—%(§% §£)+§£=o,
e;=B+F=0,

e4=—§;—41——B=0, (5)
e5=%€4;—-C=0,

e6=§—fl—E=0,

e7=-§%—F=O.

The equivalent optimisation problem can now be
posed as

;

min I=f Y we?dA. (6)
4i=1

Subject to the appropriate boundary conditions.

The minimisation is carried out over the seven
field variables and as the integrand in (6) only

contains first derivatives the theory of the calculus
of variations provides natural boundary conditions
that will be satisfied at any point on the boundary
where any of the seven fields are not fully speci-
fied.

It will be noticed that in this approach the usual
distinction between Dirichlet and Von Neumann
boundary conditions vanishes as the velocity vec-
tor and its derivatives play an identical role in (4)
and (8).

It will also be noticed that as the continuity
equation is now simply

B+ F=0, (7)

then this equation can be satisfied directly by
replacing the variable F wherever it occurs in (5)
by the variable — B and then eliminating e, from
the summation in (6). The presence of the continu-
ity equation therefore essentially simplifies the
solution of the Navier-Stokes equations by the
finite element optimisation approach; whilst in
most alternative approaches it is a considerable
complication.

The least squares approach illustrated above for
the Navier—Stokes equation can obviously be ap-
plied in a similar manner to any set of non-self-ad-
joint partial differential equations. The objective
function (6) can be generalised as the solution of a
set of partial differential equations

e,(x)=0

will occur at the minimum of
1=/éTwsz (8)

for any positive definite operator W(x). However,
in this paper we will assume the more simple form
6).

To minimise the objective (6) we will first ap-
proximate the area of interest by dividing it into a
series of elements in an identical way to that used
in any finite element solution technique. The dis-
tributed array processor is most suited for the
solution of problems that can be divided into
regular rectangular elements and that will be the
case in all problems described in this paper. On
such rectangular elements we will introduce the
standard bilinear shape functions ¢,(x), so the

L.C.W. Dixon, P.G. Ducksbury / Finite element optimisation on the DAP 189

fields (4) will be approximated by

A=2Xa,; (x), B=3%b¢, (x), C=2Xc9, (x),
D =1Yd¢, (x), E=Zei¢i (x), F=2Xf, (x),
P=Yp¢; (x).

(9)
Inside any particular rectangular element only four
shape functions are nonzero those corresponding
to the nodes at the corners of the element. Again
as in many finite element approaches approxima-
tions to the fields 4 — P are defined once values
are given to the field variables at the nodes. Once
these values are specified the value of I (6) can be
calculated, and so the nodal field values become
the optimisation variables. Boundary conditions of
the Dirichlet or Von Neumann type determine the
appropriate nodal field values and these are sim-
ply given the correct value and deleted from the
list of optimisation variables. Further details of the
application of finite element optimisation to the
Navier-Stokes equations can be found in Singh
[4).

For any particular mesh the minimization of
(6) is now a finite dimensional optimisation prob-
lem. Many codes have been written for the solu-
tion of such problems and the necessary safeguards
that need to be included into such codes to ensure
that the iteration terminates in a predefined
neighbourhood of the solution in a finite number
of steps are now well known and can be found in
many texts, including Dixon {2]. These safeguards
have been incorporated in all codes based on finite
element optimisation written for the ICL-DAP
computer and in all the codes written for sequen-
tial machines used in the comparison study.

It is usual when developing optimisation codes
to first test them on a quadratic function. In this
context a quadratic function implies linear partial
differential equations and hence our first example
is linear.

3. Linear problems

The first problem investigated was the linear
heat conduction equation

9 oT a oT
S A O EEC

This is a self-adjoint equation which can be de-
rived from the minimization of

I=L[K1(§—:)2+K2(§—i)2—2QT]dA. (11)

In this particular case it is easy to show that the
set of linear simultaneous equations derived when
the finite element optimisation method is applied
to (11) for a given mesh is identical to the set
obtained by applying Galerkin’s method. The
solutions will therefore be identical. As this exam-
ple was being considered as the first test problem
for a general approach we chose however not to
assemble the stiffness matrix A, which is precisely
the Hessian matrix of /. Instead we chose to
rearrange (11) as

I=/AfdA=§{j;lfdA}=§Iel (12)

which emphasises the structured nature of the
problem and as we are considering a two-dimen-
sional problem the natural mapping of field nodes
onto the rectangular grid of the distributed array
processors was adopted. The unknown value of the
field variable at node K was therefore held on
processor K and therefore all the information nec-
essary to calculate I; was held on four neighbour-
ing processors. Most efficient optimisation al-
gorithms are based on the function gradient V1,
this similarly can be written

vi=) vi,,

el

and use may be made of the fact that any variable
only contributes to v, in four surrounding ele-
ments and that if a conjugate gradient code is
being used then a particular v, only contributes
to the change in those unknowns at the nodes of
that element. This direct relationship between ele-
ments and nodes implies that only immediate
neighbour data transfer is required.

In practise when solving the linear problem (11)
it was found advantageous to also store the ele-
ment Hessian matrices

VZI = Z Vz]el’

el

190 L.C.W. Dixon, P.G. Ducksbury / Finite element optimisation on the DAP

use being made of the fact that each element
Hessian w21, only contained 16 nonzero elements
which were stored in the processor at the NW
node of the elements, let us term this matrix A.

The Linear Conjugate Gradient Algorithm there-
fore takes the following form, when solving Au = f.

(1) Evaluate the matrices A,
(2) select ¥ and p©@ =L pP = u®
(3) set fD=fO_ 4p©®
(4) if fOTfD < tolerance then stop
5) setpV=fDand k=1
(6) if P 4p%) < € then stop
else set o = [Tpk) /pthdT 4p(6)
(7) update ugl"“) = ugl") + apé,k)
and [V = £§ = adp®
(8) update pi+ =7V + Bp
where 8 = f(k+ DTf(k+1) /e()Tf(k)
(9) If fEUTFEAD <6 or K> K gy
then stop

[16 values /processor];
[4 values/processor];

[parallel multiplication];

[parallel operation];

[parallel multiplication];

[parallel operation};
[parallel operation];
[parallel operation];

else set k = k + 1 and goto step 6.

We note that A4 only occurs in the form Ap and
that this product can be formed element by ele-
ment

AP =ZAeI Pel

el

and stored element by element. Full details of the
above algorithm are given n Dixon, Ducksbury
and Singh [1].

LOG 10
+ DEC- 1091
1CL- DAP
"
o
b 2
|
w
E
e
%]
=]
=
1
32 &b 96 7]

GRID SIZE (N X N)—G1
Fig. 1. Performance of the algorithm in solving the K; = K, =1
problem.

The heat conduction equation was solved for
four standard test problems introduced by Stone
[5]. In these one temperature was fixed at 1 and all
the others were optimisation variables, which im-
plies 9T /0n = 0 at all other points of the boundary.

The problem was solved with point
sources/sinks of 1.0, 0.5, 0.6, —1.83, —0.27
located at nodes (9,9), (9,60), (54,9), (34,34) and
(60,60), respectively, for a 64 X 64 grid and at
relative positions for a smaller gnid.

Various conductivity distributions were em-
ployed ranging from K,=K,=1 to randomly
generated conductivities in each subregion. Full
details are given in Ducksbury [3].

The performance of the algorithm in solving the
K, = K, =1 problem is shown in fig. 1, where the
solution time on the ICL-DAP is contrasted with
that on the DEC 1091. At the mesh of 41 X 41
nodes where only approximately one third of the
processors on the DAP were in use, the speed up
was already 41 compared to the DEC 1091 (14
compared to the ICL 2980). No larger problem
could be run on the DEC 1091, but on the DAP a
problem of size 64 X 64 required approximately
4.24 s of CPU time and a problem of size 127 X 127
(i.e. 16129 unknown) required 132.12 s.

Similar results for one of the ill-conditioned
problems are shown 1n fig. 2.

To verify the expectation that the introduction
of more complex shapes, albeit shapes built with

LOG 10
3
ICL - DAP
x DEC - 1091
— 2
n
=]
Zz
o
o
w
L)
w
= 4
-
C)
=]
-l
0 T

0 S5 10 15 20 25 30 35 40 45 SO
GRID SIZE- GRAPH G2

Fig. 2. Performance for one of the ill-conditioned problems.

L.C.W. Dixon, P.G. Ducksbury / Finite element optimisation on the DAP 191

rectangles, would not effect the DAP solution
time, a complex shape was defined by a logic mask
and an otherwise similar problem was solved in
very similar time. This again contrasts with the
effect on CPU times of many other finite element
codes, where the complex boundaries would upset
the relationship between local and global variables
and destroy any diagonal band structure being
used, thus significantly increasing the CPU time.

4. Nonlinear problems

The first nonlinear problem to be studied was
given by
2 2
9—'% + a_ L (13)
axl ax 2 ax 1

an analytical solution is known, namely
u=6x;/Rx3,

and the boundary conditions were set to match
this. The finite element/optimisation method in-
troduces three fields A =u, B=90u/dx;, C=
du/0x, so that for a 64 X 64 grid there are 3 X 4096
unknowns before the specification of the boundary
conditions. The resulting minimization problem
was solved by 2 nonlinear optimisation codes,
namely a parallel version of the Fletcher—Reeves
conjugate gradient code and a parallel version of
the truncated Newton algorithm. In the truncated
Newton algorithm, a set of linear equations needs
to be solved at each iteration and the linear con-
jugate gradient code generated for the heat con-
duction problem was used for this purpose. The
nonlinear conjugate gradient code can be sum-
marised as follows

(1) Initialise x{, k=0.

(2) Calculated I(x{)= Zle,(x

(3) Calculate VI(x{)= ZV G(x$N.

@ If | vl <eork> kmax then stop.
(5) If k=0 then set

4
Da= — Z VIel,j’ *
j=1

else set p** D= —pJ®) 4 gpo), "

where B = || VI® || /|| vT* V|3,

(6) Call a line search routine to estimate the step
length a

(7) Update x§* D =x{P + aplP,
k=k+1 and goto step 3.

As we have seen the parallelism of the problem

can be used to compute I and VI very efficiently

on the parallel processor; the relation between pg

and VI, is also very simple as only four elements

contribute to VI for any particular variable.

Similarly the Truncated Newton Method can be

summarised as follows:

(1) Set k = 0, initialise x; calculate I (x©@).

(2) Set a =1, calculate wI(x®’) and v2I(x*¥)=
A.

(3) If |vI?|| <€ or K>K,_,, then stop.

(4) Solve the problem AU= —vI by the linear
c.g. method described in section 3.

(5) If u satisfies Wolfes Test I [2] goto step 6 else
step 7.

(6) If I(x™® + au) satisfies Wolfes Test II + III [2]
then set x**D=x® 4y k41 and goto step
2.
else call a line search to find a value a that
does satisfy Wolfes tests II and III, then up-
date x and k and goto step 2.

LOGIC 10
4

PARALLEL CG COOE
< PARALLEL TN COOE
V SEQUENTIAL CG CODE
© SEQUENTIAL TN CODE

{SECS)

LOG

¢ 16 32 48 6l
GRID SIZE -G&
Fig. 3. Results of the tests for the truncated Newton method.

192 L.C.W. Dixon, P.G. Ducksbury / Finite element optimisation on the DAP

(7) Replace A by an appropriate positive definite
matrix and goto step 2.

Full details in both codes are given in Ducksbury

[3].

Tests were undertaken on the above problem
for a variety of values of R, the most interesting
being those with R = 500. The grid size was varied
up to 64 X 64. The results are shown in fig. 3. The
sequential c.g. code required in excess of one hour
to solve a 39 X 39 grid (4111 unknowns), the DAP
just 34 s, this being a speed up of 104 over the
DEC 1091 (35 over the ICL 2980) at a point where
only 3 /8 of the processors of the DAP are in use.
For a grid of 64 X 64 processors (12036 un-
knowns) the conjugate gradient method on the
DAP required 50.76 s, whilst the truncated New-
ton method only required 13.21 s. Further details
can be found in Ducksbury [3].

5. The Navier-Stokes problem

The Navier-Stokes problem described in sec-
tion 2 has been implemented and tested on the
ICL-DAP, unfortunately it was found that there
was insufficient store available to use the Trun-
cated Newton method that had proved more effi-
cient on the previous problem but no difficulties

p=0 X4 u=z1,v=0
2 1/)(1,? (1.1 20- 1)
u= 2{x, - u= 20x,-
v=0 1}"" "{v:Oz z
V=u=0 —=J -v=uz0
\ N
N AR
(0,0) 0,9 X,
a uv=_0
p=0 X u=1, v=0
(1,0 1,1)
u=0 u=0
v=20 N v=0
p ooy (0,1} x,

uv=_0

Fig. 4. The boundary conditions for the Navier—Stokes prob-
lem.

Table 1

3x3 5X5 9x%9 17x17
Valueof I 0.2037 0.080917 0.03533 0.01730
CPU 2:56 5:39 14:11 13:51
Total CPU 36:37
Iterations 82 164 417 389

were experienced in using the conjugate gradient
code.

The boundary conditions imposed are il-
lustrated in fig. 4a, this is a well posed problem
and as anticipated the optional function value
decreases steadily as the grid is refined (see table
1).

The results shown in this table were obtained
by starting the optimisation problem with the finer
mesh from the solution with the coarser mesh.
With the bilinear element, interpolation at this
point does not alter the function value, providing
the boundary conditions can be accurately rep-
resented by the shape function, which is the case
for the above problem.

Difficulties were however experienced when this
approach was applied to the cavity driven flow
problem (see fig. 4b). On this problem the singu-
larity at the upper corners cannot be matched
accurately by the boundary conditions implied by
the bilinear element. So when interpolation was
attempted the function value increased, as indeed
did the optimal function value. This increase re-
flects the fact that the approximate problem is
becoming increasingly similar to an ill posed prob-
lem and emphasises the need for special treatment
at the upper corners.

6. Conclusions

The finite element optimisation method can be
applied to the solution of general nonlinear sets of
partial differential equations.

When the set is a function of two dimensions
and is steady the problem maps readily onto the
ICL Distributed Array Processor and very effi-
cient codes can be implemented.

L.C.W. Dixon, P.G. Ducksbury / Finite element optimisation on the DAP 193

References

[1] L.C.W. Dixon, P.G. Ducksbury and P. Singh, Technical
Report No. 132, Numerical Optimisation Centre, The Hat-
field Polytechnic (1982).

[2] L.C.W. Dixon, E. Spedicato and G.P. Szegd, Nonlinear

Optimisation: Theory and Algorithms (Birkhauser Press,
Basel, 1980).
{3] P.G. Ducksbury, PhD thesis, The Hatfield Polytechnic
(1985).
[4] P. Singh, PhD thesis, The Hatfield Polytechnic (1983).
[5] H.L. Stone, SIAM J.N.A. 5 (September 1968).

