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FINITE ELEMENT OPTIMISATION ON THE DAP

L.C.W. DIXON andP.G. DUCKSBURY

NumericalOptimisationCentre,The HatfieldPolytechnic,P.O. Box 9, CollegeLane, Hatfield, HertsALJO9AB, UK

In this paperwe reporton our experiencesolvingsteadytwo dimensionalsetsof nonlinearsimultaneouspartial differential
equationson the ICL-DAP computer.Resultsare reportedfor theheatconductionequation,a nonlinearpdein onevariable
andfor theNavierStokesequations.In eachcasetheparallelimplementationof finiteelementoptimisationon theDAP solved
coarsegrid problemsmuchmorerapidly than thesequentialcodeandalsoenabledmuch fine grids to beused.

1. Introduction equations.Wewill thendiscusshow the methodis
implementedon the DAP by first consideringa

Finite Element Optimisation is an approach linear variationalproblem — namely the solution
that enablesgeneral linear or nonlinear partial of the heat conductionequation.Then a simple
differential equationsto be formulatedandsolved nonlinearproblemwill be formulatedby the least
by an iteration processthat is guaranteedto squares approach and solved using both the
terminatein a finite number of iterations.If the Fletcher—Reevesconjugategradient method and
systemof partial differential equationsis two-di- the truncatedNewton method on the distributed
mensionaland steadythen the methodis readily arrayprocessorandfinally DAP solutionsof the
implementable on the ICL-Distributed Array Navier—Stokesproblemwill be discussed.
Processor.In this paperwe will concentrateon
suchproblems.

In finite elementoptimisationany set of simul-
2. The finite element/optimisationapproach

taneouspartial differentail equationsare first con-
verted into an equivalentoptimisation problem.
The solution of partial differential equationscan Finite elementoptimisationhasbeendeveloped
be convertedinto an optimisationproblemin two as a generalmethod for solving sets of nonlinear
differentways. If the partial differential equations partial differential equations.If the equationsare
are self-adjoint,then they canbederivedfrom the steadyandtwo dimensionalit is particularly easy
minimization of a functional subject to certain to implementthe methodon the ICL-DAP so the
boundaryconditionsby usingthe calculusof van- methodwill be illustrated in this paperusing the
ations.We will term this the variationalapproach two dimensionalsteadyNavier—Stokesproblem.
and when solving such problemsit is natural to Let Ox1, Ox2 be two orthogonalaxesin the
revert to the underlying functional optimisation two-dimensionalspaceand let u be the compo-
problem.Fornon-self-adjointsystemssucha func- nentof velocity parallelto Ox1 and v the compo-
tion doesnot exist, but it is possibleto createa nentparallel to Ox2. Similarly let p be the pres-
family of functionalintegralswhoseminimacorre- sureat anypoint in the flow andlet R denotethe
spond to the solution of the problem by taking Reynolds number. Then the flow of incom-
weightedleastsquareintegralsof the equations. pressiblefluid is governedby the equations:

In this paperwe will first describethe basisof
au 3u Bp 1

the finite elementoptimisationapproachby show- ~ + ~ = — + — (1)
ing how it would be appliedto theNavier Stokes
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u + v -~- = — + J~.v~,2 containsfirst derivativesthe theoryof the calculusax
1 ax2 8x2 R ‘ ~ ~ of variationsprovidesnaturalboundaryconditions

au a ~ that will be satisfiedat anypoint on the boundary
and ~— + ~— = 0. (3) where any of the sevenfields are not fully speci-

1 2 fied.

A flow problemis completedby the specification It will benoticedthat in this approachtheusual
of an appropriateset of boundaryconditions. distinction betweenDirichlet and Von Neumann

To convertthis probleminto a first-orderopti- boundaryconditionsvanishesas the velocity vec-
misationproblem of the type normally treatedin tonand its derivativesplay an identical role in (4)
the calculusof variationswe introduceadditional and(8).
variablesandusesevenfield variables It will also be noticed that as the continuity

equationis now simply
au au

A=u B=~— C=~— B+F=0, (7)

D — E — F — av (4) then this equation can be satisfied directly by— V — Bx, — ax2 replacingthe variableF whereverit occurs in (5)

by the variable — B and theneliminating e3 from
and the summationin (6). Thepresenceof the continu-

ity equation therefore essentially simplifies the

solution of the Navier—Stokesequationsby the
In terms of these variables the Navier—Stokes finite element optimisation approach;whilst in
equationsbecomesevenfirst-orderequations most alternative approachesit is a considerable

1 8.8 ac aP complication.
= AB + CD — ~ ~ + ~— + i— = 0, The leastsquaresapproachillustratedabovefor

X1 X2 X1 the Navier—Stokesequationcan obviously be ap-

1 8E 8F aP plied in a similarmannerto any setof non-self-ad-
e2AE+DF~ —+— +—r0 . . . . . .

R 8x, 8x2 ax2 ‘ joint partial differential equations.The objective

— B + F — 0 function(6) canbegeneralisedas the solution of a— — ‘ setof partial differential equations

(5) e1(x)=O

will occur at the minimum of
e5 = — — C= 0,

I=feTWedA (8)

e6 = i— — E 0, for any positivedefiniteoperatorW(x).However,

in this paperwe will assumethe moresimpleform
e7=~——F=O. (6).

To minimise the objective(6) we will first ap-

proximatethe areaof interestby dividing it into a
The equivalentoptimisationproblem can now be . .

osedas senesof elementsin an identical way to that used
p in any finite elementsolution technique.The dis-

tributed array processoris most suited for the
mm i=f ~ w,e,

2 dA. (6) solution of problems that can be divided into
1 regular rectangularelementsand that will be the

Subject to the appropriateboundaryconditions, casein all problemsdescribedin this paper. On
The minimisation is carried out over the seven such rectangularelementswe will introduce the
field variables and as the integrand in (6) only standardbilinear shape functions ~

1(x), so the
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fields (4) will be approximatedby This is a self-adjoint equationwhich can be de-
rived from the minimization of

A —~a1~1(x), B=~b14)1(x), C=~c41(x),

D=Ld~4~(x), E=Ee141 (x), F=~f~~(x), — 0T~
2 1 8T )2 2QT]dA (11)

P = Lp~(x). —JA[ ~(ax
1 / 8x2I K —) +K2(—

(9) In this particularcaseit is easyto show that the

Insideanyparticularrectangularelementonly four set of linear simultaneousequationsderivedwhen
shapefunctions are nonzerothosecorresponding the finite elementoptimisationmethod is applied
to the nodesat the cornersof the element.Again to (11) for a given mesh is identical to the set
as in many finite elementapproachesapproxima- obtained by applying Galerkin’s method. The
tions to the fields A — P are definedoncevalues solutionswill thereforebe identical.As this exam-
are given to the field variablesat the nodes.Once ple was being consideredas the first testproblem
thesevaluesare specifiedthe valueof I (6) canbe for a generalapproachwe chosehowevernot to
calculated,and so the nodal field valuesbecome assemblethe stiffnessmatrix A, which is precisely
the optimisationvariables.Boundaryconditionsof the Hessian matrix of I. Instead we choseto
the Dirichiet or Von Neumanntypedeterminethe rearrange(11) as
appropriatenodal field valuesand theseare sim-
ply given the correctvalue and deletedfrom the I = ft dA = ~ If fdA\ = ~Iei (12)
list of optimisationvariables.Furtherdetailsof the A ci el ci

applicationof finite elementoptimisation to the which emphasisesthe structured nature of the
Navier—Stokesequationscan be found in Singh problem and as we are consideringa two-dimen-
[4]. sionalproblemthe naturalmappingof field nodes

For any particularmesh the minimization of I onto the rectangulargrid of the distributedarray
(6) is now a finite dimensionaloptimisationprob- processorswasadopted.Theunknownvalueof the
lem. Many codeshavebeenwritten for the solu- field variable at node K was therefore held on
tion of suchproblemsandthe necessarysafeguards processorK andthereforeall the information nec-
that needto be includedinto suchcodesto ensure essaryto calculate‘el washeld on four neighbour-
that the iteration terminates in a predefined ing processors.Most efficient optimisation al-
neighbourhoodof the solution in a finite number gorithmsare basedon the function gradient vi,
of stepsare now well known andcanbe foundin this similarly canbewritten
many texts, including Dixon [2]. Thesesafeguards
havebeenincorporatedin all codesbasedon finite ~‘/‘ = ~

elementoptimisation written for the ICL-DAP ci

computerandin all the codeswritten for sequen- andusemaybe madeof the fact that anyvariable
tial machinesusedin thecomparisonstudy. only contributesto vId in four surroundingele-

It is usualwhen developingoptimisationcodes ments and that if a conjugategradientcode is
to first testthem on a quadraticfunction. In this beingused thena particular vI~1only contributes
contextaquadraticfunction implieslinear partial to the changein thoseunknownsat the nodesof
differentialequationsandhenceour first example that element.This direct relationshipbetweenele-
is linear.

ments and nodes implies that only immediate
neighbourdatatransferis required.

3. Linear problems In practisewhen solving the linearproblem(11)

The first problem investigated was the linear it was found advantageousto also store the ele-
heatconductionequation ment Hessianmatrices

a I 8T \ a (K2~ ~ = — ~. (10) v
2I = ~

ci8X2)
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use being made of the fact that each element The heatconduction equationwas solved for
Hessianv

2lei only contained16 nonzeroelements four standardtest problemsintroducedby Stone
which were stored in the processorat the NW [5]. In theseonetemperaturewasfixed at 1 andall
node of the elements,let us term this matrix Aei. the otherswere optimisationvariables,which im-

The Linear ConjugateGradientAlgorithm there- pliesaT/an = 0at all otherpointsof theboundary.
fore takesthefollowing form, whensolving Au =f. The problem was solved with point

sources/sinks of 1.0, 0.5, 0.6, —1.83, —0.27
(1) EvaluatethematricesA~

1 [16values/processor]; located at nodes (9,9), (9,60), (54,9), (34,34) and
(2) selectu~°~and ~(O)= = ~ [4 values/processor]; (60,60), respectively, for a 64 x 64 grid and at
(3) setf~>= j(0) —Ap~~ [parallel multiplication]; relativepositionsfor a smallergrid.
(4) if f(i)Tf(i) < tolerancethen StOP Various conductivity distributions were em-
(5) setp(~_~f(~and Ic = 1 [paralleloperation]; ployed ranging from K1 = K2 = 1 to randomly

(6) if p~

TAp~< c then stop [parallelmultiplication], generatedconductivities in each subregion.Full
elseseta

1(k)Tf(k)/p(k)TAP(k) detailsare given in Ducksbury[3].
(7) update~ 1)= u~+ ap~j~ [paralleloperation]; The performanceof the algorithmin solving the

andf~k±1)=feck)_ aAp~ [parallel operation]; K1 = K2 = 1 problemis shownin fig. 1, wherethe
(8) update~ + I)= I + 1)+ ~ [parallel operation]; solution time on the ICL-DAP is contrastedwith

where~=f

Tf/f~Tf~ that on the DEC 1091. At the mesh of 41 X 41
(9) 1ff Tf+l).ccorK>K=,, nodeswhere only approximatelyone third of the

then stop processorson the DAP were in use,the speedup
elseset k = k+ 1 andgoto step6. was already41 comparedto the DEC 1091 (14

We note that A only occurs in the form Ap and comparedto the ICL 2980). No larger problem
that this product can be formed elementby ele- could be run on the DEC 1091,but on the DAP a
ment problem of size 64 x 64 required approximately

4.24 sof CPU timeandaproblemof size127 X 127
Ap = ~Aei Pci (i.e. 16129unknown)required132.12s.

ci

Similar results for one of the ill-conditioned
and storedelementby element.Full detailsof the problemsareshownin fig. 2.
abovealgorithm are given in Dixon, Ducksbury To verify the expectationthat the introduction
and Singh [1]. of more complex shapes,albeit shapesbuilt with
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Fig. 1. Performanceof thealgorithm in solvingthe K

1 K2 = 1
problem. Fig. 2. Performancefor oneof theill-conditioned problems.
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rectangles, would not effect the DAP solution else set ~(k+1) = — vI(© + *

time, a complexshapewasdefinedby a logic mask where$ = II vI~ 12/Il VI~”~112
and an otherwisesimilar problem was solved in
very similar time. This againcontrastswith the (6) Call a line searchroutine to estimatethe step
effect on CPU timesof many other finite element length a
codes,wherethe complexboundarieswould upset (7) Updatex~ 1) = x~j~+ ap~~

the relationshipbetweenlocalandglobal variables k = k + 1 andgotostep3.
and destroy any diagonal band structure being As we haveseenthe parallelismof the problem
used,thus significantly increasingthe CPU time. canbe usedto computeI and vi veryefficiently

on the parallelprocessor;the relationbetweenPd
and VIeI is also very simpleas only four elements

4. Nonlinear problems contributeto vi for anyparticularvariable.
Similarly the TruncatedNewtonMethod canbe

The first nonlinearproblem to be studiedwas summarisedas follows:
given by (1) Set k = 0, initialise x~ calculateI (x~°~).

(2) Seta = 1, calculateVI(x~) and V2I(x(©) =

a2u a2u
—Ru—=0, (13) A.

~2~2 8x
1 (3) If IIv’2

211<�orK>Kmax thenstop.

(4) Solve the problem A U = — vi by the linear
an analyticalsolution is known,namely c.g. methoddescribedin section3.

u = 6x
1/Rx~, (5) If u satisfiesWolfesTest I [2] gotostep6 else

step 7.
and the boundaryconditionswere set to match (6) If I(x(k) + au) satisfiesWolfesTestII + III [2]
this. The finite element/optimisationmethod in- then set x~ 1) = x~+ u; k + 1 andgotostep
troduces three fields A = u, B = a u/ax1, C= 2.
a u/ax2sothat for a 64 X 64 grid thereare 3 X 4096 else call a line searchto find a value a that
unknownsbeforethe specificationof theboundary does satisfy Wolfes testsII and III, then up-
conditions. The resulting minimization problem datex and k and gotostep2.
was solved by 2 nonlinear optimisation codes,
namely a parallel versionof the Fletcher—Reeves LOGIC 10

conjugategradientcodeanda parallel version of &

the truncatedNewton algorithm. In the truncated

to be solved at eachiteration and the linear con- • PARALLEL CD CODE
jugate gradientcode generatedfor the heat con- ic’ PARALLEL TN CODE

(~1 V SEÜIJENTIAL CD CODEduction problem was used for this purpose.The U
w

nonlinear conjugate gradient code can be sum-
Newton algorithm,aset of linearequationsneeds
marisedas follows ~ 2
(1) Initialise x~, k = 0.
(2) Calculated1(x~[’~)=~Iei(X~(’~).

ci

(3) Calculate~I(x~)= ~VI~i(x~). 1
ci

(4) If II vIII~<e or k> km~thenstop.
(5) If k=0 thenset

0
0 16 32 48 64

4

Pel — ~ ~ * GRID SIZE -(14
j=1 Fig. 3. Resultsof the tests for thetruncatedNewtonmethod.
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(7) ReplaceA by an appropriatepositivedefinite Table 1

matrix andgotostep2. 3x3 5x5 9x9 17x17

Full detailsin bothcodesare given in Ducksbury
r~i Value of I 0.2037 0.080917 0.03533 0.01730

J. CPU 2:56 5:39 14:11 13:51
Testswere undertakenon the aboveproblem Total CPU 36:37

for a variety of valuesof R, the most interesting Iterations 82 164 417 389

beingthosewith R = 500. Thegrid size wasvaried
up to 64 X 64. The resultsare shownin fig. 3. The
sequentialc.g. coderequiredin excessof onehour
to solve a 39 x 39 grid (4111 unknowns),the DAP
just 34 s, this being a speedup of 104 over the were experiencedin using the conjugategradient
DEC 1091 (35 overthe ICL 2980) at a pointwhere code.
only 3/8 of the processorsof the DAP are in use. The boundary conditions imposed are il-
For a grid of 64 x 64 processors(12036 un- lustratedin fig. 4a, this is a well posedproblem
knowns) the conjugategradient method on the and as anticipated the optional function value
DAP required50.76 s, whilst the truncatedNew- decreasessteadilyas the grid is refined (see table
ton method only required13.21 s. Furtherdetails 1).
canbefoundin Ducksbury[3]. The resultsshown in this table were obtained

by startingthe optimisationproblemwith the finer
mesh from the solution with the coarser mesh.

5. The Navier—Stokesproblem With the bilinear element, interpolation at this
point doesnot alter the function value,providing

The Navier—Stokesproblem describedin see- the boundaryconditions can be accuratelyrep-
tion 2 has beenimplementedand testedon the resentedby the shapefunction,which is the case
ICL—DAP, unfortunatelyit was found that there for theaboveproblem.
was insufficient store available to use the Trun- Difficulties werehoweverexperiencedwhenthis
catedNewtonmethodthat hadprovedmoreeffi- approachwas applied to the cavity driven flow
cient on the previousproblem but no difficulties problem (seefig. 4b). On this problemthe singu-

larity at the upper corners cannot be matched
accuratelyby the boundaryconditionsimplied by

Xi U~1, vO the bilinear element. So when interpolation was
(1,01 oIl attemptedthe function valueincreased,as indeed

u~2(x
1 —).il (U 2(x2 — ~ . . .

0 ‘ jv 0 did the optimal function value. This increasere-
fleets the fact that the approximateproblem is

U 0 becomingincreasinglysimilar to anill posedprob-

______________________ lem andemphasisesthe needfor specialtreatment

a (0,0 10,1) ic~ at the uppercorners.

U .5 0

- ~ U-~ ~-0 6. Conclusions
1 - —

l1~ ~1,1)

= 0 The finite elementoptimisationmethod canbe
0 0 appliedto the solution of generalnonlinearsets of

partial differential equations.
(0 0)’ “““‘ ‘ ‘ ‘ ‘~ ‘ ‘~“(O1) When the set is a function of two dimensions

b ‘ u . v 0 ‘ 2 and is steadythe problem mapsreadily onto the
Fig. 4. Theboundaryconditionsfor the‘Navier—Stokesprob- ICL Distributed Array Processorand very effi-
lem. cient codescanbe implemented.
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